18 research outputs found

    South Pacific Paleogene Climate

    Get PDF
    International Ocean Discovery Program (IODP) Expedition 378 was designed to recover the first comprehensive set of Paleogene sedimentary sections from a transect of sites strategically positioned in the South Pacific to reconstruct key changes in oceanic and atmospheric circulation. These sites would have provided an unparalleled opportunity to add crucial new data and geographic coverage to existing reconstructions of Paleogene climate. In addition to the ~15 month postponement of Expedition 378 and subsequent port changes resulting in a reduction of the number of primary sites, testing and evaluation of the R/V JOIDES Resolution derrick in the weeks preceding the expedition determined that it would not support deployment of drill strings in excess of 2 km. Because of this determination, only 1 of the originally approved 7 primary sites was drilled. Expedition 378 recovered the first continuously cored, multiple-hole Paleogene sedimentary section from the southern Campbell Plateau at Site U1553. This high–southern latitude site builds on the legacy of Deep Sea Drilling Project (DSDP) Site 277, a single, partially spot cored hole, providing a unique opportunity to refine and augment existing reconstructions of the past ~66 My of climate history. This also includes the discovery of a new siliciclastic unit that had never been drilled before. As the world’s largest ocean, the Pacific Ocean is intricately linked to major changes in the global climate system. Previous drilling in the low-latitude Pacific Ocean during Ocean Drilling Program (ODP) Legs 138 and 199 and Integrated Ocean Drilling Program Expeditions 320 and 321 provided new insights into climate and carbon system dynamics, productivity changes across the zone of divergence, time-dependent calcium carbonate dissolution, bio- and magnetostratigraphy, the location of the Intertropical Convergence Zone, and evolutionary patterns for times of climatic change and upheaval. Expedition 378 in the South Pacific Ocean uniquely complements this work with a high-latitude perspective, especially because appropriate high-latitude records are unobtainable in the Northern Hemisphere of the Pacific Ocean. Site U1553 and the entire corpus of shore-based investigations will significantly contribute to the challenges of the “Climate and Ocean Change: Reading the Past, Informing the Future” theme of the IODP Science Plan (How does Earth’s climate system respond to elevated levels of atmospheric CO2? How resilient is the ocean to chemical perturbations?). Furthermore, Expedition 378 will provide material from the South Pacific Ocean in an area critical for high-latitude climate reconstructions spanning the Paleocene to late Oligocene

    Neuropeptide Signaling Differentially Affects Phase Maintenance and Rhythm Generation in SCN and Extra-SCN Circadian Oscillators

    Get PDF
    Circadian rhythms in physiology and behavior are coordinated by the brain's dominant circadian pacemaker located in the suprachiasmatic nuclei (SCN) of the hypothalamus. Vasoactive intestinal polypeptide (VIP) and its receptor, VPAC2, play important roles in the functioning of the SCN pacemaker. Mice lacking VPAC2 receptors (Vipr2−/−) express disrupted behavioral and metabolic rhythms and show altered SCN neuronal activity and clock gene expression. Within the brain, the SCN is not the only site containing endogenous circadian oscillators, nor is it the only site of VPAC2 receptor expression; both VPAC2 receptors and rhythmic clock gene/protein expression have been noted in the arcuate (Arc) and dorsomedial (DMH) nuclei of the mediobasal hypothalamus, and in the pituitary gland. The functional role of VPAC2 receptors in rhythm generation and maintenance in these tissues is, however, unknown. We used wild type (WT) and Vipr2−/− mice expressing a luciferase reporter (PER2::LUC) to investigate whether circadian rhythms in the clock gene protein PER2 in these extra-SCN tissues were compromised by the absence of the VPAC2 receptor. Vipr2−/− SCN cultures expressed significantly lower amplitude PER2::LUC oscillations than WT SCN. Surprisingly, in Vipr2−/− Arc/ME/PT complex (Arc, median eminence and pars tuberalis), DMH and pituitary, the period, amplitude and rate of damping of rhythms were not significantly different to WT. Intriguingly, while we found WT SCN and Arc/ME/PT tissues to maintain a consistent circadian phase when cultured, the phase of corresponding Vipr2−/− cultures was reset by cull/culture procedure. These data demonstrate that while the main rhythm parameters of extra-SCN circadian oscillations are maintained in Vipr2−/− mice, the ability of these oscillators to resist phase shifts is compromised. These deficiencies may contribute towards the aberrant behavior and metabolism associated with Vipr2−/− animals. Further, our data indicate a link between circadian rhythm strength and the ability of tissues to resist circadian phase resetting

    Seropositivity in blood donors and pregnant women during the first year of SARS-CoV-2 transmission in Stockholm, Sweden.

    Get PDF
    BACKGROUND: In Sweden, social restrictions to contain SARS-CoV-2 have primarily relied upon voluntary adherence to a set of recommendations. Strict lockdowns have not been enforced, potentially affecting viral dissemination. To understand the levels of past SARS-CoV-2 infection in the Stockholm population before the start of mass vaccinations, healthy blood donors and pregnant women (n = 5,100) were sampled at random between 14 March 2020 and 28 February 2021. METHODS: In this cross-sectional prospective study, otherwise-healthy blood donors (n = 2,600) and pregnant women (n = 2,500) were sampled for consecutive weeks (at four intervals) throughout the study period. Sera from all participants and a cohort of historical (negative) controls (n = 595) were screened for IgG responses against stabilized trimers of the SARS-CoV-2 spike (S) glycoprotein and the smaller receptor-binding domain (RBD). As a complement to standard analytical approaches, a probabilistic (cut-off independent) Bayesian framework that assigns likelihood of past infection was used to analyse data over time. SETTING: Healthy participant samples were randomly selected from their respective pools through Karolinska University Hospital. The study was carried out in accordance with Swedish Ethical Review Authority: registration number 2020-01807. PARTICIPANTS: No participants were symptomatic at sampling, and blood donors were all over the age of 18. No additional metadata were available from the participants. RESULTS: Blood donors and pregnant women showed a similar seroprevalence. After a steep rise at the start of the pandemic, the seroprevalence trajectory increased steadily in approach to the winter second wave of infections, approaching 15% of all individuals surveyed by 13 December 2020. By the end of February 2021, 19% of the population tested seropositive. Notably, 96% of seropositive healthy donors screened (n = 56) developed neutralizing antibody responses at titres comparable to or higher than those observed in clinical trials of SARS-CoV-2 spike mRNA vaccination, supporting that mild infection engenders a competent B-cell response. CONCLUSIONS: These data indicate that in the first year since the start of community transmission, seropositivity levels in metropolitan in Stockholm had reached approximately one in five persons, providing important baseline seroprevalence information prior to the start of vaccination.Swedish Research Council (agreement 2017-00968) National Institutes of Health (agreement 400 SUM1A44462-02) Wellcome Trust (WT107881) Medical Research Council (MC_UP_1302/5) European Union-funded CoroNAb project (coordination number 101003653
    corecore