6 research outputs found

    Complotype affects the extent of down-regulation by Factor I of the C3b feedback cycle in vitro.

    Get PDF
    Sera from a large panel of normal subjects were typed for three common polymorphisms, one in C3 (R102G) and two in Factor H (V62I and Y402H), that influence predisposition to age-related macular degeneration and to some forms of kidney disease. Three groups of sera were tested; those that were homozygous for the three risk alleles; those that were heterozygous for all three; and those homozygous for the low-risk alleles. These groups vary in their response to the addition of exogenous Factor I when the alternative complement pathway is activated by zymosan. Both the reduction in the maximum amount of iC3b formed and the rate at which the iC3b is converted to C3dg are affected. For both reactions the at-risk complotype requires higher doses of Factor I to produce similar down-regulation. Because iC3b reacting with the complement receptor CR3 is a major mechanism by which complement activation gives rise to inflammation, the breakdown of iC3b to C3dg can be seen to have major significance for reducing complement-induced inflammation. These findings demonstrate for the first time that sera from subjects with different complement alleles behave as predicted in an in-vitro assay of the down-regulation of the alternative complement pathway by increasing the concentration of Factor I. These results support the hypothesis that exogenous Factor I may be a valuable therapeutic aid for down-regulating hyperactivity of the C3b feedback cycle, thereby providing a treatment for age-related macular degeneration and other inflammatory diseases of later life.This is the author's accepted manuscript and will be under embargo until the 13th of August 2015. This final version is available from Wiley in Clinical & Experimental Immunology at http://onlinelibrary.wiley.com/doi/10.1111/cei.12437/abstract

    Use of Proteins Identified through a Functional Genomic Screen To Develop a Protein Subunit Vaccine That Provides Significant Protection against Virulent Streptococcus suis in Pigs.

    Get PDF
    Streptococcus suis is a bacterium that is commonly carried in the respiratory tract and that is also one of the most important invasive pathogens of swine, commonly causing meningitis, arthritis, and septicemia. Due to the existence of many serotypes and a wide range of immune evasion capabilities, efficacious vaccines are not readily available. The selection of S. suis protein candidates for inclusion in a vaccine was accomplished by identifying fitness genes through a functional genomics screen and selecting conserved predicted surface-associated proteins. Five candidate proteins were selected for evaluation in a vaccine trial and administered both intranasally and intramuscularly with one of two different adjuvant formulations. Clinical protection was evaluated by subsequent intranasal challenge with virulent S. suis While subunit vaccination with the S. suis proteins induced IgG antibodies to each individual protein and a cellular immune response to the pool of proteins and provided substantial protection from challenge with virulent S. suis, the immune response elicited and the degree of protection were dependent on the parenteral adjuvant given. Subunit vaccination induced IgG reactive against different S. suis serotypes, indicating a potential for cross protection

    The Multifunctional Host Defense Peptide SPLUNC1 Is Critical for Homeostasis of the Mammalian Upper Airway

    Get PDF
    Otitis media (OM) is a highly prevalent pediatric disease caused by normal flora of the nasopharynx that ascend the Eustachian tube and enter the middle ear. As OM is a disease of opportunity, it is critical to gain an increased understanding of immune system components that are operational in the upper airway and aid in prevention of this disease. SPLUNC1 is an antimicrobial host defense peptide that is hypothesized to contribute to the health of the airway both through bactericidal and non-bactericidal mechanisms. We used small interfering RNA (siRNA) technology to knock down expression of the chinchilla ortholog of human SPLUNC1 (cSPLUNC1) to begin to determine the role that this protein played in prevention of OM. We showed that knock down of cSPLUNC1 expression did not impact survival of nontypeable Haemophilus influenzae, a predominant causative agent of OM, in the chinchilla middle ear under the conditions tested. In contrast, expression of cSPLUNC1 was essential for maintenance of middle ear pressure and efficient mucociliary clearance, key defense mechanisms of the tubotympanum. Collectively, our data have provided the first in vivo evidence that cSPLUNC1 functions to maintain homeostasis of the upper airway and, thereby, is critical for protection of the middle ear
    corecore