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Summary  

Sera from a large panel of normal subjects were typed for three common 

polymorphisms, one in C3 (R102G) and two in Factor H (V62I and Y402H) that 

influence predisposition to age related macular degeneration and to some forms 

of kidney disease.  Three groups of sera were tested; those that were 

homozygous for the three risk alleles; those that were heterozygous for all 

three; and those homozygous for the low risk alleles.  These groups vary in their 

response to the addition of exogenous Factor I when the alternative 

complement pathway is activated by zymosan.  Both the reduction in the 

maximum amount of iC3b formed and the rate at which the iC3b is converted to 

C3dg are affected.  For both reactions the at-risk complotype requires higher 

doses of Factor I to produce similar down-regulation.  Since iC3b reacting with 

the complement receptor CR3 is a major mechanism by which complement 

activation gives rise to inflammation the breakdown of iC3b to C3dg can be 

seen to have major significance for reducing complement induced 

inflammation.   

  

These findings demonstrate for the first time that sera from subjects with 

different complement alleles do behave as predicted in an in-vitro assay of the 

down-regulation of the alternative complement pathway by increasing the 

concentration of Factor I.  These results support the hypothesis that exogenous 

Factor I may be a valuable therapeutic for down-regulating hyperactivity of the 

C3b feedback cycle and thereby providing a treatment for age-related macular 

degeneration and other inflammatory diseases of later life.  
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Introduction 

Over recent years it has become apparent that there are multiple polymorphisms 

among complement components which affect their function. The first of these to be 

described (1) was the C3 F/S polymorphism (R102G) where the F allele (102G) was 

shown to have increased functional activity (2). It was shown much later that this 

increase in function is due to the decreased affinity of C3 convertases including C3F for 

Factor H (3). Neither allele is hypomorphic so there is no difference in C3 levels due to 

the polymorphism (4) and data below. 

 

In the last decade there has been a veritable explosion in the discovery of complement 

allotypes and their association with disease. These are reviewed by Harris et al (5) who 

coined the term complotype “to represent the pattern of genetic variants in complement 

genes inherited by an individual which alters risk for both inflammatory disorders and 

infectious diseases involving complement”. Certain complotypes predispose very 

significantly to a group of inflammatory diseases, of which age related macular 

degeneration is much the most common. Some of the risk alleles are also associated 

with atypical haemolytic uraemic syndrome and a group of other kidney diseases now 

known collectively as C3 glomerulopathies (6) and quite possibly also to other 

inflammatory diseases of later life, including atherosclerosis (7) and systemic vasculitis 

(8). 

 

The significant variant alleles that predispose to disease all share the property of 

increasing the activity of the C3b feedback cycle, which amplifies all complement 

pathways irrespective of triggering stimulus (9). Significant alleles that occur at 

reasonable frequency include C3F, loss of function alleles in Factor H (62I and 402H). 

They also include a gain of function allele in Factor B (R32 W/Q) but because of 
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ascertainment difficulties described below it was not possible to include this 

polymorphism in the present study.  

 

These hyperactive complotypes are likely to be advantageous in conferring resistance 

against infection in early life but in later life, once IgG antibodies have been formed to 

the infecting bacteria, become disadvantageous in predisposing to inflammatory 

diseases. There is therefore considerable interest in finding methods for reversing this 

hyperactivity of the C3b feedback cycle.  

 

The C3b feedback cycle is discussed in detail in (9). Its rate is essentially controlled by 

the balance of two reactions: the positive feedback reaction where C3b reacts with 

Factor B which forms the alternative pathway C3 convertase after the Factor B is 

cleaved by Factor D; and the C3b breakdown reaction where C3b reacts with Factor H 

(or some other proteins that have co-factor activity for Factor I (CD46 and CR1)) which 

allows cleavage of C3b to iC3b by Factor I. In the total absence of Factor I the 

breakdown reaction cannot take place and all C3 is converted to C3b by the positive 

feedback reaction. However, raising the level of Factor I above the physiological level 

then has the reverse effect of reducing complement activation by accelerating the 

cleavage of C3b to iC3b. In the presence of CR1 there is also further cleavage of iC3b 

to C3c and C3dg. This final Factor I cleavage is important since it destroys the pro-

inflammatory effects of iC3b. 

 

It has long been known (10, 11) that raising the serum concentration of Factor I and/or of 

Factor H can down-regulate the feedback cycle, but from a therapeutic perspective, 

elevating Factor I is more likely to be effective. There are a number of reasons for this:  
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Firstly, the human serum concentration of Factor I is much lower than that of Factor H 

(reported around 35 µg/ml and 250 µg/ml respectively). Less Factor I protein would 

therefore be required to produce an effect.  

  

Secondly, in some diseases and tissue sites, Factor H function is blocked by binding of 

dimers of Factor H-related proteins to cell surfaces for which they have a much 

enhanced avidity (12). This evidence indicates that this is a dominant pathogenic effect 

and increasing Factor H concentration is unlikely to overcome the effect on 

complement amplification.  

  

The third reason, probably the most important, is that the main inflammatory mediator 

produced by complement activation, iC3b, is produced by Factor I in the breakdown 

cycle. iC3b reacts with the complement receptor CR3 on neutrophils triggering cell 

activation and phagocytosis. Augmenting concentrations of Factor H will lead to the 

formation of more iC3b in the first instance, and will not accelerate the breakdown of 

iC3b that is already present. Raising Factor I levels, on the other hand will both remove 

C3b from the feedback cycle and enhance the conversion of iC3b to C3dg (9 and data 

in this paper). We are therefore pursuing the possibility of developing Factor I as a 

therapeutic and this is occurring against the background of the continuing therapeutic 

development (by King’s College London) of Mirococept - a truncated CR1 derivative 

(13) - as a co-factor for the conversion of C3b to iC3b and  of C3b to C3c and C3dg (9). 

 

CR1 is the only co-factor that allows Factor I cleavage of iC3b to C3dg under 

physiological conditions (9) because the affinity of Factor H for iC3b is too low for it to 

act as co-factor. At reduced ionic strength, however, Factor H can act efficiently as co-

factor for the cleavage of iC3b. When the breakdown of iC3b in serum, carefully 

cleared of cell fragments, is looked at after many hours of incubation it is not possible 



6 
 

This article is protected by copyright. All rights reserved. 

to distinguish between minute contamination with soluble CR1 and extremely inefficient 

co-factor activity of Factor H – or both. Where iC3b has been fixed on red blood cell 

CR1 in-vivo (for example in immune complex diseases such as SLE or in cold 

autoantibody haemolytic anaemia) the CR1 on the cells is removed by proteolysis in 

the reticulo-endothelial system (14) and it is feasible that traces of this could appear in 

the serum. 

 

As a preliminary investigation, in-vitro complement activation studies have been carried 

out on serum samples from subjects of three different complotypes, using the canonical 

alternative pathway activator - yeast cell walls (Zymosan). The effect of Factor I 

supplementation on iC3b formation and its subsequent breakdown to C3dg was 

measured. Most experiments were done without adding a source of CR1.    This is 

normally present on human erythrocytes but the combination of a particulate activator 

and erythrocytes gave problems in the assay used.    In some later experiments a 

soluble CR1 derivative (Mirococept) was used to provide an efficient co-factor for the 

cleavage of iC3b to C3dg by Factor I. 
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Materials and Methods 

Sera studied 

Sera were sourced through the Cambridge BioResource (Rec reference 04/Q0108/44, 

http://www.cambridgebioresource.org.uk/). DNA samples from the database were 

genotyped for three SNPs, one in C3 and two in Factor H, where there are known 

associations with susceptibility to age related macular degeneration and/or atypical 

haemolytic uraemic syndrome and/or C3 glomerulopathies (3-6). Factor B polymorphism 

is characterised by HindIII RFLP. SNPs in linkage disequilibrium with the HindIII sites 

can be used to tag this site. We used rs12757487 within the LD region to tag the 

HindIII site. However, these SNPs could not be investigated by this method since they 

failed to genotype on a number of different genotyping platforms. Table 1 shows the rs 

numbers and the nucleotide and amino acid variation that made up the final selection 

criteria as well as the number of subjects tested and the numbers in each of the 

selected complotype groups. Volunteers from the Cambridge BioResource were 

subsequently assigned to three groups according to their genotype at these three 

SNPs.   These are shown in detail in Table 1.   Briefly, Group A were subjects who are 

heterozygotes at all three SNPs (and make up 5.6% of the population studied); Group 

B were subjects who are susceptible homozygotes at all three SNPs (and make up 

0.6% of the population studied); and  

Group C were subjects who are protective homozygotes at all three SNPs (and made 

up 3.3% of the population studied). 

 

Equal numbers of volunteers from each group were invited to participate in the study 

and donate a fresh sample of blood for sera isolation. Written informed consent was 

received from all volunteers who participated in the study under approved ethics 

application rec ref: HBREC 2012.06. Consent was received in all cases by Cambridge 
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BioResource research nurses. The blood was taken and the sera were separated as 

described (15) and stored at -80oC in small aliquots until they were used.  

 

The experimenters remained blind to genotype throughout the study until all the sera 

had been collected and results had been obtained.  

 

Quantitation of Factor I in the serum samples 

The concentration of Factor I was measured in sixty-one sera using commercially 

available immunodiffusion plates (Bindarid plates from The Binding Site, Edgbaston, 

Birmingham, UK). The assay was recalibrated using as standards the Factor I purified 

from plasma and supplied by Comp Tech and the recombinant Factor I prepared by 

GlaxoSmithKline.   It should be noted that there are differences in the way that the 

concentrations of Factor I can be expressed. The extinction coefficient at 280 nm can 

be calculated from the amino acid composition to be 1.53 for a solution of 1 mg/ml. 

This gives the concentration of the “core protein” but ignores the 13.7 per cent 

carbohydrate in the molecule. For the intact protein the OD used for calibration is 1.35 

for 1 mg/ml. 

 

Quantitation of C3, Factor H and Factor B in the serum samples 

Antigenic quantitation of C3, Factor H and Factor B in the sera was performed by Dr. 

Sanja Ugrinovic at the Clinical Immunology Laboratories at Cambridge University 

Hospitals NHS Trust using standard nephelometric techniques. 

 

Assay for Activation of the Alternative Complement Pathway – the “Clone 9 capture 

ELISA” 

Factor I Two sources of Factor I were tested: Factor I purified from plasma prepared by 

Comp Tech (Complement Technology, Inc., Tyler, Texas, USA); and recombinant 
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Factor I prepared by GlaxoSmithKline (Stevenage, UK). The two preparations gave 

identical activity to protein ratios as measured by conglutination assays (data not 

shown).  All the Clone 9 capture assays reported in this paper were performed using 

the recombinant Factor I. 

 

Typically a serum from each genotype (A, B and C, eighteen sera in each group) was 

tested alongside each other on any one experimental day. The Clone 9 antibody (16, 17) 

recognises C3g which appears as a neo-antigen in iC3b and in C3dg but is not 

exposed in native C3 or in C3b. Therefore, these plates will capture iC3b or C3dg from 

the reaction mixture. The Clone 4 detection antibody (a monoclonal anti-C3c) (17) 

reacts with a conformational epitope in C3c and reacts with C3, C3b, iC3b and C3c. 

Therefore, only bound iC3b is detected by this antibody on the Clone 9 coated plate. 

When iC3b is converted to C3dg the C3c is released and with it the ability to be 

detected by the biotinylated-Clone 4 antibody.  

 

Using this assay we were able to investigate the effect of adding Factor I to sera of the 

three different genotypes and also additionally adding a co-factor for the third Factor I 

cleavage. For this purpose we used Mirococept (previously known as APT070), which 

contains the first three SCRs of CR1 bound to a membrane-interactive amphiphilic 

peptide “tail” (13).  CR1 and this product derived from it are essential co-factors that 

allow Factor I to cleave iC3b to C3dg and C3c. They also share with other complement 

control proteins (CD46 and Factor H) co-factor activity for the Factor I conversion of 

C3b to iC3b. There is very little, if any, soluble CR1 present in sera as is known from 

the long half-life (more than eighteen hours) of EAC43bi cells incubated in human 

serum before they lose their (iC3b requiring) reaction with conglutinin (16). This is unlike 

the situation in whole blood where there is CR1 present on the red cells. 
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Experimental protocol 

Stage 1: The sera were thawed rapidly at 37oC, vortexed briefly, and then placed on 

ice. The sera were then treated with zymosan with the addition of recombinant Factor I 

(to 25 or 50 µg/ml) and/or Mirococept (APT070) (to 10, 20, 40 or 80 µg/ml). Zymosan 

(Sigma) was diluted in “Alternative Pathway buffer” (veronal buffered saline pH 7.2 

containing 10mM EGTA and 2 mM Mg). The soluble additives were added to 500µl 

aliquots of serum prior to addition of zymosan to a final concentration of 5% and 

rotated in a 37oC incubator. At selected time points 40µl of each sample was removed 

into 10µl of 50mM EDTA. The sampling times were: 0, 30, 60, 120, 180, 240, 480 

minutes. At each time point the samples were microfuged to remove the zymosan and 

frozen at -80oC until tested by ELISA. 

 

Stage 2: Coating. Nunc Maxisorb microtitre plates were coated with a Clone 9 anti-C3g 

antibody (50 µl/well Clone 9 at 25 µg/ml in 0.1M carbonate/bicarbonate coating buffer 

pH 9.5), incubated overnight at 4°C, followed by 5 washes in PBS/0.05%Tween 20. 

The plates were blocked with PBS/0.05%Tween 20/4% dried skimmed milk (2 hours 

room temperature) then washed again as above.  

 

Stage 3: Capture. 50 µl supernatants of the incubation mixtures as described above 

were loaded onto the plates and incubated 1 hour at room temperature.  

 

Stage 4: Detection. Captured antigen (iC3b) was measured using biotinylated Clone 4 

anti-C3c monoclonal antibody (17). After washing the plates (5X PBS/0.05%Tween 20), 

50 µl biotinylated-Clone 4 at 5 µg/ml diluted in PBS/gelatin was added to each well and 

the plate incubated for 1 hour at room temperature. The plates were washed (5X 

PBS/0.05%Tween 20) before incubation with the Extravidin-peroxidase (Sigma Cat. 

No. E2886) diluted 1/1000 in PBS/gelatin for 1 hour at room temperature. The plates 
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were washed (5X PBS/0.05%Tween 20) and then incubated with 100 µl per well TMB 

substrate (Life Technologies) for 15-30 minutes. The reaction was stopped by the 

addition of 1M H2SO4 (50 µl per well) and the plates read immediately at 450nm on a 

plate reader. The maximum OD achieved in the first two hours of incubation is taken as 

a measure of the extent of activation of the alternative pathway and the percentage 

reduction of this level to its lowest level (usually at eight hours) as a measure of the 

breakdown of iC3b to C3c and C3dg. 

 

Statistical Analyses 

All the comparisons made were of ratios of amounts of iC3b generated in a particular 

serum in a single experiment. Ratios (which have variance in both numerator and 

denominator) have to be analysed using non-parametric methods and the appropriate 

test, the Kruskal-Wallis test, was performed using the Graph Pad Prism programs.  

Because of the influence of acute phase reactions the level of the individual 

components was normally distributed and the same non-parametric statistics have 

been used. 

.
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Results  

Antigenic concentrations of Factor I, C3, Factor H and Factor B 

The concentration of Factor I in 61 serum samples was measured using 

immunodiffusion plates. Figure 1a shows the distribution of serum Factor I levels 

across the different genotypes. Although there is a trend in the mean levels of Factor I 

suggesting that genotype C>A>B, these differences are not significant on statistical 

analysis across all groups; nor when comparing just Genotype C with Genotype B. The 

mean level for the whole population was 45 µg/ml (10th – 90th percentile 34 – 52 µg/ml). 

This compares well with the mean level of 40 µg/ml (10th – 90th percentile: 27– 84 

µg/ml) found by Reynolds et al (4) using a similar assay and performed in a 

complement laboratory of high repute; and is not greatly different from the long-

standing estimate of 35 µg/ml (18).   These results show that the effect of complotype 

does not depend on systematic differences in the pre-existing levels of Factor I. 

C3, Factor H and Factor B levels are shown in Figure 1b, c and d. There is no 

significant correlation between the levels of any of these components and genotypes. It 

is indeed the case that the median level in the C3S homozygotes (Genotype C) is 

slightly higher than in the C3F homozygotes (Genotype B).   There is one normal 

subject in the (protected) Genotype C group who clearly has an acute phase reaction 

with markedly elevated levels of C3, Factor H and Factor B and some elevation of 

Factor I.   It is however already known (4) that the genetic variants in C3 and Factor H 

that define the complotypes in this study do not show systematic differences in C3 or 

Factor H levels. Their differences are due to differences in activity not in levels of 

expression.  Sera depleted of the relevant components and reconstituted with purified 

components of appropriate complotype (C3102G/fB32R/fh62V) have been reported to 

show a 6-fold enhanced haemolytic titre in an alternative pathway assay compared with 

sera reconstituted with complotype C3102R/fB32Q/fH62I(3).     
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Down-regulation of Alternative Complement pathway by raising the concentration of 

Factor I 

Recombinant human Factor I was added to serum from eighteen subjects of each of 

the three genotypes and complement was activated using zymosan as described. The 

amount of soluble iC3b (not bound to zymosan) was measured using the Clone 9 

capture assay. The effect of adding various concentrations of Factor I to a single serum 

sample from each genotype is shown in Figures 2 (i) – 2 (iii) which also show a typical 

time course for the Clone 9 assay. The data in Figure 2 show that Genotype B serum is 

substantially more resistant to the action of added Factor I when compared to the 

genotype A and C serum. In order to assess the effect of 50 g/ml supplementation of 

Factor I on complement activation, the OD at maximum (before 2 hours) and following 

conversion of iC3b to C3dg (8 hours) was compared. The measurements chosen to 

analyse the test data were: 

i. the percentage reduction of optical density produced by the addition of 50 µg/ml 

Factor I to the maximum reading achieved in the first two hours;  

ii. the percentage reduction at eight hours.  

The first of these readings measures the reduction in the amount of iC3b produced by 

the zymosan activation; and the second measures the reduction in the amount 

remaining after conversion to C3dg is anticipated to be substantially complete. 

The percentage reductions brought about by the addition of Factor I at both time points 

(Figures 3 and 4) differ highly significantly between the three groups, with Genotype C 

> Genotype A > Genotype B. The differences observed between the three genotype 

groups are even more striking considering that the sera taken were not controlled for 

age or body mass index or for the possible occurrence of any acute phase reaction (all 

of which can modify complement levels). Therefore, the data in this study indicate that 
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the genotype differences observed were considerably robust. A summary of all the 

results obtained with sera of the three different genotypes in their response to the 

addition of 50µg of Factor I is shown on Table 2. 

 

All these tests were carried out using serum, which does not represent the 

physiological situation in-vivo where CR1 is present on red blood cells in the 

circulation, and additionally on leucocytes at sites of inflammation. Notably, CR1 is the 

only co-factor in humans which mediates the Factor I clip of iC3b to C3dg under 

physiological conditions (19). To assess the effect of added co-factor, we have used a 

“tailed” recombinant CR1 functional protein fragment, Mirococept. This compound was 

tested at several dilutions using only the amount of Factor I present in the serum and 

also with supplementation of Factor I at 25 and 50µg/ml. These results are shown in 

Table 3. It can be seen that Mirococept has major concentration-related effects on both 

the maximum iC3b deposition and on its breakdown, showing that CR1 is a powerful 

inhibitor at both stages. Nevertheless, even at high concentrations of Mirococept (80 

µg/ml) (initial trials of Mirococept in perfusing kidneys before transplantation used 

10µg/ml) (20), an effect of adding further Factor I is still apparent. It is clear, therefore, in 

the presence of co-factor, the down-regulatory action of Factor I supplementation will 

be greater.  
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Discussion 

It is now well established that polymorphisms in complement components that can 

cause acceleration of the C3b feedback cycle predispose to a group of inflammatory 

diseases including age related macular degeneration and haemolytic uraemic 

syndrome and C3 glomerulopathies. In this study we have examined a number of sera 

from normal donors who have been genotyped for three of these polymorphisms which 

are fairly common:  

the C3S/F polymorphism (R102G) where the rarer allele C3F (102G) with a frequency 

around 0.2 in Caucasoids and much lower in other racial groups confers susceptibility; 

the Factor H polymorphism (Y402H) where the rarer allele (402H) with a frequency of 

0.38 confers susceptibility;  

the Factor H polymorphism (V62I) where the commoner allele (62V) with a frequency 

of 0.81 confers susceptibility. 

 

Serum was taken from subjects who were homozygous for all three susceptibility 

alleles (Genotype B), or were homozygous for all three protective alleles (Genotype C), 

or were heterozygous at all three loci (Genotype A). Of the 9989 individuals tested who 

gave results at all three loci, 55 (0.6%) were Genotype B; 331 (3.3%) were Genotype 

C; and 558 (5.6%) were Genotype A. Together these make up just under 10 per cent of 

the population tested. These were normal volunteers not selected by family or clinical 

history for age related macular degeneration or renal disease. The susceptible 

Genotype B represents a very small percentage of the population.  

 

The sera were tested in-vitro for the extent of inhibition mediated by supplementation of 

Factor I to the activation of the alternative pathway by zymosan. The production of iC3b 
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and its subsequent conversion to C3dg was tested in the absence or presence of a 

derivative of CR1 which provided co-factor activity for the split from iC3b to C3dg.  

 

The study demonstrated that there were no significant differences in Factor I 

concentrations between the three genotypes as measured antigenically although 

individual sera varied fairly widely. There is also quite extensive within-group variation 

in the rate and degree of complement activation by zymosan. This is not unexpected 

since the donors will vary in age and sex and body mass index and their acute phase 

state was not assessed at the time they were bled.  

 

On the other hand, there was a substantial and highly significant difference between 

the mean of the different genotypes on the magnitude of the lowering effect of Factor I 

supplementation on iC3b formation and on the conversion of iC3b to C3dg. The at-risk 

genotype (Group B) showed a smaller degree of inhibition by Factor I compared to the 

protected genotype (Group C) with the heterozygous genotype (Group A) showing 

intermediate values. This was the case both at the time of maximal activation within the 

first two hours, which is a measure of the formation of iC3b, and at eight hours which is 

a measure of the breakdown of iC3b to C3dg.  

 

Our results demonstrate that complement genotype at just three loci has a striking 

influence on the regulation of alternative pathway complement activation by Factor I – 

the hyperinflammatory complotype being more resistant to down regulation by 

increased Factor I concentration . We have, furthermore, shown that the addition of a 

CR1-derived co-factor has a marked enhancing effect in the presence of physiological 

amounts of Factor I. This effect is further enhanced by the addition of further Factor I 

and the combination allows the total inhibition of complement activation.    We can 
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therefore conclude that Factor I supplementation can reverse, in-vitro at least, the 

effects that the risk complotype imposes on the alternative complement pathway. 

Further experiments on fewer sera using endotoxin as a soluble complement activator, 

(which allows the effect of erythrocytes as source of CR1 to be assessed) and using a 

range of Factor I concentrations are to be published separately.     

 

The results obtained encourage further development of Factor I as a therapeutic to 

down-regulate the alternative pathway (or the C3b feedback cycle). Factor I 

supplementation may be particularly effective in those individuals who have a genetic 

predisposition to complement hyperactivity and who show any signs of the associated 

diseases.  
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Figure Legends 

Figure 1a. Factor I antigenic concentration in the different genotypes (61 samples). The 

concentrations were measured by single immunodiffusion on Binderid plates. The 

results for all sera are shown with the median and interquartile range. The slight trend 

towards lower levels from Genotypes C (low risk) to A (heterozygotes) to B (high risk) 

is not statistically significant whether analysed non-parametrically or parametrically. 

Non-parametric analysis using the Kruskal-Wallis test is shown in the Figure. 

Figures 1b, c and d.   Antigenic concentrations of C3, Factor H and Factor B were 

measured nephelometrically in the Clinical Immunology Laboratory at the Cambridge 

University NHS Trust by Dr.   Sanja Ugrinovic.   Results are shown with median and 

interquartile range.   There were no significant differences between groups. 

 

Figure 2 (i), (ii) and (iii). These figures show illustrative time course assays carried out 

with different concentrations of Factor I using three individual sera, one from each 

Genotype. The optical density at 450 nm is a measure of the amount of iC3b bound to 

the Clone 9 plate. A striking change between Genotypes is seen, particularly at the 

highest concentration of Factor I, where the Genotype B serum has maximum optical 

density twice that of either of the other Genotypes.  

 

Figure 3. The percentage reduction produced by 50 µg/ml Factor I on the maximum OD 

450 nm produced before two hours. The graph shows the individual results with the 

median and the inter-quartile range. Results were analysed non-parametrically and 

gave highly significant results by the Kruskall-Wallis test. This data shows the 

percentage reduction in the amount of zymosan-triggered iC3b produced after 

supplementation of sera with Factor I. Eighteen subjects in each group. 
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Figure 4. The percentage reduction in zymosan-triggered iC3b produced by the 

addition of 50 µg/ml Factor I on the OD 450 nm at eight hours. The graph shows the 

individual results with the median and the inter-quartile range. Results were analysed 

non-parametrically and gave highly significant results. This Figure therefore shows the 

efficiency with which added Factor I allows the final clip of iC3b to C3dg which again 

shows Genotype C>Genotype A>Genotype B. Eighteen subjects in each group. 



Table 1 Sera Studied

rs number Observed Variant Type Description Minor Allele Frequency

Minor allele 
Number 
tested

Observed Expected

rs800292 c/t SNP Factor H V62I t (I)  protective 10658 0.232 0.213

rs1061170 c/t SNP Factor H Y402H c (H)  susceptible 10551 0.383 0.42

rs2230199 c/g SNP C3 SF R102G g (G)  susceptible 10586 0.206 0.19

Number with 
3 genotypes

9989

Genotype C
Homozygous 
protective at all 
three loci

331 3.3%

Genotype A
Heterozygous at 
all three loci

558 5.6%

Genotype B
Homozygous 
susceptible at 
all three loci

55 0.6%



Table 2 Summary of  results

Genotype C (low 
risk 

homozygotes)

Genotype A 
(heterozygotes)

Genotype B (high 
risk 

homozygotes)

FI concentration (µg/ml)* Median 46.00 43.00 43.00 Kruskal-Wallis statistic 2.706
Shown in Figure 1a 25% Percentile 40.00 40.00 34.00 p=0.2584

75% Percentile 52 52 52
Interquartile range 12.00 12.00 18.00

C3 concentration (µg/ml) Median 1.20 0.99 0.98 Kruskal-W allis statistic 3.707
Shown in Figure 1b 25% Percentile 0.92 0.93 0.90 p=0.1567

75% Percentile 1.43 1.25 1.14
Interquartile range 0.52 0.32 0.24

Reduction by 50 µg/ml FI Median 37.2% 29.1% 22.9% Kruska l-Wallis statistic 19.66
of maximum reading (%) 25% Percentile 29.6% 20.3% 13.4% p=0.0001

75% Percentile 49.1% 39.7% 26.4%
Interquartile range 19.5% 19.4% 13.0%

Reduction by 50 µg/ml FI Median 53.5% 44.0% 28.2% Kruska l-Wallis statistic 18.41
of 8 hr reading (%) 25% Percentile 46.4% 32.6% 16.9% p=<0.0001

75% Percentile 61.0% 50.4% 43.7%
Interquartile range 14.6% 17.8% 26.8%

*Sera activated with Zymosan in Mg/EGTA buffer.
18 sera/group.  Each serum is from a different individual.



Table 3 Effects of Factor I and Mirococept combinat ions on iC3b formation and 
destruction in a normal serum

Factor I 
concentration 
µg/ml

0 0 25 25 50 50

MAX MIN MAX MIN MAX MIN

Mirococept 0 100% 76% 99% 62% 83% 42%

concentration 10 65% 49% 74% 51% 63% 47%

µg/ml 20 63% 59% 42% 42% 33% 17%

40 47% 37% 36% 25% 20% 16%

80 31% 23% 16% 5% 3% 0%

Values expressed as % of maximum value with no additions of Factor I or Mirococept
Max = maximum value within first two hours
Min = minimum value whenever it occurs
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Figure 2 (i)
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Figure 2 (ii)
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Figure 2 (iii)
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Figure 3
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Figure 4  
Percentage reduction at 8 hours in zymosan-

triggered iC3b by exogenous Factor Itriggered iC3b by exogenous Factor I


