88 research outputs found

    Fluctuations and irreversibility: An experimental demonstration of a second-law-like theorem using a colloidal particle held in an optical trap

    Get PDF
    The puzzle of how time-reversible microscopic equations of mechanics lead to the time-irreversible macroscopic equations of thermodynamics has been a paradox since the days of Boltzmann. Boltzmann simply sidestepped this enigma by stating “as soon as one looks at bodies of such small dimension that they contain only very few molecules, the validity of this theorem [the second law of thermodynamics and its description of irreversibility] must cease.” Today we can state that the transient fluctuation theorem (TFT) of Evans and Searles is a generalized, second-law-like theorem that bridges the microscopic and macroscopic domains and links the time-reversible and irreversible descriptions. We apply this theorem to a colloidal particle in an optical trap. For the first time, we demonstrate the TFT in an experiment and show quantitative agreement with Langevin dynamics

    On the relationship between dissipation and the rate of spontaneous entropy production from linear irreversible thermodynamics

    Get PDF
    When systems are far from equilibrium, the temperature, the entropy and the thermodynamic entropy production are not defined and the Gibbs entropy does not provide useful information about the physical properties of a system. Furthermore, far from equilibrium, or if the dissipative field changes in time, the spontaneous entropy production of linear irreversible thermodynamics becomes irrelevant. In 2000 we introduced a definition for the dissipation function and showed that for systems of arbitrary size, arbitrarily near or far from equilibrium, the time integral of the ensemble average of this quantity can never decrease. In the low-field limit, its ensemble average becomes equal to the spontaneous entropy production of linear irreversible thermodynamics. We discuss how these quantities are related and why one should use dissipation rather than entropy or entropy production for non-equilibrium systems

    Communicating population health statistics through graphs: a randomised controlled trial of graph design interventions

    Get PDF
    BACKGROUND: Australian epidemiologists have recognised that lay readers have difficulty understanding statistical graphs in reports on population health. This study aimed to provide evidence for graph design improvements that increase comprehension by non-experts. METHODS: This was a double-blind, randomised, controlled trial of graph-design interventions, conducted as a postal survey. Control and intervention participants were randomly selected from telephone directories of health system employees. Eligible participants were on duty at the listed location during the study period. Controls received a booklet of 12 graphs from original publications, and intervention participants received a booklet of the same graphs with design modifications. A questionnaire with 39 interpretation tasks was included with the booklet. Interventions were assessed using the ratio of the prevalence of correct responses given by the intervention group to those given by the control group for each task. RESULTS: The response rate from 543 eligible participants (261 intervention and 282 control) was 67%. The prevalence of correct answers in the control group ranged from 13% for a task requiring knowledge of an acronym to 97% for a task identifying the largest category in a pie chart. Interventions producing the greatest improvement in comprehension were: changing a pie chart to a bar graph (3.6-fold increase in correct point reading), changing the y axis of a graph so that the upward direction represented an increase (2.9-fold increase in correct judgement of trend direction), a footnote to explain an acronym (2.5-fold increase in knowledge of the acronym), and matching the y axis range of two adjacent graphs (two-fold increase in correct comparison of the relative difference in prevalence between two population subgroups). CONCLUSION: Profound population health messages can be lost through use of overly technical language and unfamiliar statistical measures. In our study, most participants did not understand age standardisation and confidence intervals. Inventive approaches are required to address this problem

    Angiopreventive Efficacy of Pure Flavonolignans from Milk Thistle Extract against Prostate Cancer: Targeting VEGF-VEGFR Signaling

    Get PDF
    The role of neo-angiogenesis in prostate cancer (PCA) growth and metastasis is well established, but the development of effective and non-toxic pharmacological inhibitors of angiogenesis remains an unaccomplished goal. In this regard, targeting aberrant angiogenesis through non-toxic phytochemicals could be an attractive angiopreventive strategy against PCA. The rationale of the present study was to compare the anti-angiogenic potential of four pure diastereoisomeric flavonolignans, namely silybin A, silybin B, isosilybin A and isosilybin B, which we established previously as biologically active constituents in Milk Thistle extract. Results showed that oral feeding of these flavonolignans (50 and 100 mg/kg body weight) effectively inhibit the growth of advanced human PCA DU145 xenografts. Immunohistochemical analyses revealed that these flavonolignans inhibit tumor angiogenesis biomarkers (CD31 and nestin) and signaling molecules regulating angiogenesis (VEGF, VEGFR1, VEGFR2, phospho-Akt and HIF-1α) without adversely affecting the vessel-count in normal tissues (liver, lung, and kidney) of tumor bearing mice. These flavonolignans also inhibited the microvessel sprouting from mouse dorsal aortas ex vivo, and the VEGF-induced cell proliferation, capillary-like tube formation and invasiveness of human umbilical vein endothelial cells (HUVEC) in vitro. Further studies in HUVEC showed that these diastereoisomers target cell cycle, apoptosis and VEGF-induced signaling cascade. Three dimensional growth assay as well as co-culture invasion and in vitro angiogenesis studies (with HUVEC and DU145 cells) suggested the differential effectiveness of the diastereoisomers toward PCA and endothelial cells. Overall, these studies elucidated the comparative anti-angiogenic efficacy of pure flavonolignans from Milk Thistle and suggest their usefulness in PCA angioprevention

    Patient Safety in the Cardiac Operating Room: Human Factors and Teamwork: A Scientific Study from the American Heart Association

    Get PDF
    The cardiac surgical operating room (OR) is a complex environment in which highly trained subspecialists interact with each other using sophisticated equipment to care for patients with severe cardiac disease and significant comorbidities. Thousands of patient lives have been saved or significantly improved with the advent of modern cardiac surgery. Indeed, both mortality and morbidity for coronary artery bypass surgery have decreased during the past decade. Nonetheless, the highly skilled and dedicated personnel in cardiac ORs are human and will make errors. Refined techniques, advanced technologies, and enhanced coordination of care have led to significant improvements in cardiac surgery outcomes

    Fluctuation theorem for heat flow

    No full text
    Thermal conduction in a classical many-body system which is in contact with two isothermal reservoirs maintained at different temperatures is considered. The probability that when observed for a finite time, the heat flux of a finite system flows in the reverse direction to that required by the Second Law of Thermodynamics is calculated from first principles. Analytical expressions are given for the probability of observing Second Law violating fluctuations in this system. These expressions constitute an application of the fluctuation theorem to the problem of thermal conduction. The expressions are tested using non-equilibrium molecular dynamics simulations of heat flow between thermostated walls

    Equilibrium Microstates Which Generate 2Nd Law Violating Steady-States

    Get PDF

    A local fluctuation theorem

    No full text
    The Fluctuation Theorem (FT) gives an analytic expression for the probability, in a nonequilibrium system of finite size observed for a finite time, that the dissipative flux will flow in the reverse direction to that required by the Second Law of Thermodynamics. In the present letter a Local version of the Fluctuation Theorem (LFT), is derived. We find that in the case of planar Poiseuille flow of a Newtonian fluid between thermostatted walls, nonequilibrium molecular dynamics simulation results support LFT. PACS numbers: 05.20.-y, 05.70.Ln, 47.10.+g, 47.40.-
    corecore