41 research outputs found
Better Few than Hungry: Flexible Feeding Ecology of Collared Lemurs Eulemur collaris in Littoral Forest Fragments
Frugivorous primates are known to encounter many problems to cope with habitat degradation, due to the fluctuating spatial and temporal distribution of their food resources. Since lemur communities evolved strategies to deal with periods of food scarcity, these primates are expected to be naturally adapted to fluctuating ecological conditions and to tolerate a certain degree of habitat changes. However, behavioral and ecological strategies adopted by frugivorous lemurs to survive in secondary habitats have been little investigated. Here, we compared the behavioral ecology of collared lemurs (Eulemur collaris) in a degraded fragment of littoral forest of south-east Madagascar, Mandena, with that of their conspecifics in a more intact habitat, Sainte Luce.Lemur groups in Mandena and in Sainte Luce were censused in 2004/2007 and in 2000, respectively. Data were collected via instantaneous sampling on five lemur groups totaling 1,698 observation hours. The Shannon index was used to determine dietary diversity and nutritional analyses were conducted to assess food quality. All feeding trees were identified and measured, and ranging areas determined via the minimum convex polygon. In the degraded area lemurs were able to modify several aspects of their feeding strategies by decreasing group size and by increasing feeding time, ranging areas, and number of feeding trees. The above strategies were apparently able to counteract a clear reduction in both food quality and size of feeding trees.Our findings indicate that collared lemurs in littoral forest fragments modified their behavior to cope with the pressures of fluctuating resource availability. The observed flexibility is likely to be an adaptation to Malagasy rainforests, which are known to undergo periods of fruit scarcity and low productivity. These results should be carefully considered when relocating lemurs or when selecting suitable areas for their conservation
Moonstruck Primates: Owl Monkeys (Aotus) Need Moonlight for Nocturnal Activity in Their Natural Environment
Primates show activity patterns ranging from nocturnality to diurnality, with a few species showing activity both during day and night. Among anthropoids (monkeys, apes and humans), nocturnality is only present in the Central and South American owl monkey genus Aotus. Unlike other tropical Aotus species, the Azara's owl monkeys (A. azarai) of the subtropics have switched their activity pattern from strict nocturnality to one that also includes regular diurnal activity. Harsher climate, food availability, and the lack of predators or diurnal competitors, have all been proposed as factors favoring evolutionary switches in primate activity patterns. However, the observational nature of most field studies has limited an understanding of the mechanisms responsible for this switch in activity patterns. The goal of our study was to evaluate the hypothesis that masking, namely the stimulatory and/or inhibitory/disinhibitory effects of environmental factors on synchronized circadian locomotor activity, is a key determinant of the unusual activity pattern of Azara's owl monkeys. We use continuous long-term (6–18 months) 5-min-binned activity records obtained with actimeter collars fitted to wild owl monkeys (n = 10 individuals) to show that this different pattern results from strong masking of activity by the inhibiting and enhancing effects of ambient luminance and temperature. Conclusive evidence for the direct masking effect of light is provided by data showing that locomotor activity was almost completely inhibited when moonlight was shadowed during three lunar eclipses. Temperature also negatively masked locomotor activity, and this masking was manifested even under optimal light conditions. Our results highlight the importance of the masking of circadian rhythmicity as a determinant of nocturnality in wild owl monkeys and suggest that the stimulatory effects of dim light in nocturnal primates may have been selected as an adaptive response to moonlight. Furthermore, our data indicate that changes in sensitivity to specific environmental stimuli may have been an essential key for evolutionary switches between diurnal and nocturnal habits in primates
The development of sex differences in ring-tailed lemur feeding ecology
Sex differences in feeding ecology may develop in response to fluctuations in physiological costs to females over their reproductive cycles, or to sexual size dimorphism, or function to minimize feeding competition within a group via resource partitioning. For most mammal species, it is unknown how these factors contribute to sex differences in feeding, or how the development of males and females reflects these intraspecific feeding differences. We show changes in dietary composition, diversity, overlap, and foraging behavior throughout development in ring-tailed lemurs (Lemur catta) and test how the development of sex differences in feeding is related to female costs of reproduction and year-round resource partitioning. Sex differences in dietary composition were only present when females were lactating, but sex differences in other aspects of feeding, including dietary diversity, and relative time spent feeding and foraging, developed at or near the time of weaning. Sex difference in juveniles and subadults, when present, were similar to the differences found in adults. The low year-round dietary overlap and early differences in dietary diversity indicate that some resource partitioning may begin with young individuals and fluctuate throughout development. The major differences between males and females in dietary composition suggest that these larger changes in diet are closely tied to female reproductive state when females must shift their diet to meet energetic and nutritional requirements
Hiding from the Moonlight: Luminosity and Temperature Affect Activity of Asian Nocturnal Primates in a Highly Seasonal Forest
The effect of moonlight and temperature on activity of slow lorises was previously little known and this knowledge might be useful for understanding many aspects of their behavioural ecology, and developing strategies to monitor and protect populations. In this study we aimed to determine if the activity of the pygmy loris (Nycticebus pygmaeus) is affected by ambient temperature and/or moonlight in a mixed deciduous forest. We radio-collared five females and five males in the Seima Protection Forest, Cambodia, in February to May, 2008 and January to March, 2009 and recorded their behaviour at 5 minutes intervals, totalling 2736 observations. We classified each observation as either inactive (sleeping or alert) or active behaviour (travel, feeding, grooming, or others). Moon luminosity (bright/dark) and ambient temperature were recorded for each observation. The response variable, activity, was binary (active or inactive), and a logit link function was used. Ambient temperature alone did not significantly affect mean activity. Although mean activity was significantly affected by moonlight, the interaction between moonlight and temperature was also significant: on bright nights, studied animals were increasingly more active with higher temperature; and on dark nights they were consistently active regardless of temperature. The most plausible explanation is that on bright cold nights the combined risk of being seen and attacked by predators and heat loss outweigh the benefit of active behaviours
Coordination of Group Movements in Wild Red-fronted Lemurs (Eulemur rufifrons): Processes and Influence of Ecological and Reproductive Seasonality
Cathemeral Activity of Red-Fronted Brown Lemurs (Eulemur Fulvus Rufus) in the Kirindy Forest/CFPF
Cathemeral activity, which is defined by sequences of activity bouts and resting phases throughout the 24 hour cycle, is rare among primates but common among group-living lemurs. The proximate and ultimate causes and mechanisms underlying this activity pattern are still obscure. One group of Red-fronted Brown Lemurs(Eulemur fulvus rufus)was therefore observed in Kirindy Forest/CFPF for a total of 384 hours between March and June 1996 to investigate potential causes and correlates of their activity. Observations were equally distributed between diurnal and nocturnal activity cycles and intensified around periods of full and new moon. We found that Kirindy Red-fronted Brown Lemurs exhibited cathemeral activity throughout the study period and documented a significant increase of nocturnal and a concomitant decrease of diurnal activity during the transition between the wet and dry season (i.e., in April—May). Intensity and duration of activity were dependent upon lunar phase, due to a significant increase in activity during the nights of full moon. Furthermore, a balance between diurnal and nocturnal activity levels was observed. The animals moved on average 989 m during the day and 749 m at night within their 20.5 ha home-range. Distance traveled at night increased significantly during the dry season and nocturnal activity was also negatively correlated with minimum temperature. Red-fronted Brown Lemurs and their feeding patches were located significantly higher above ground at night. Considering that during the dry season less cover is provided by vegetation, these results suggest that the animals avoided diurnal exposure in the canopy and compensated for it with an increase of nocturnal foraging, especially during a full moon. Minimizing predation risks and thermoregulation benefits may therefore be among the main determinants of this behavioral strategy
