704 research outputs found

    Stress distribution during cold compression of a quartz aggregate using synchrotron X-ray diffraction: Observed yielding, damage, and grain crushing

    Get PDF
    We report new experimental results that quantify the stress distribution within a quartz aggregate during pore collapse and grain crushing. The samples were probed with synchrotron X-ray diffraction as they were compressed in a multianvil deformation apparatus at room temperature from low pressure (tens of megapascal) to pressures of a few gigapascal. In such a material, stress is likely to concentrate at grain-to-grain contacts and vanish where grains are bounded by open porosity. Therefore, internal stress is likely to vary significantly from point to point in such an aggregate, and hence, it is important to understand both the heterogeneity and anisotropy of such variation with respect to the externally applied stress. In our quartz aggregate (grain size of ~4 μm), the measured diffraction peaks broaden asymmetrically at low pressure (tens of megapascal), suggesting that open pores are still a dominant characteristic of grain boundaries. In contrast, a reference sample of novaculite (a highly dense quartz polycrystal, grain size of ~6–9 μm) showed virtually no peak broadening with increasing pressure. In the quartz aggregate, we observed significant deviation in the pressure-volume curves in the range of P = 400–600 MPa. We suggest that this marks the onset of grain crushing (generally denoted as P* in the rock mechanic literature), which is commonly reported to occur in sandstones at pressures of this order, in general agreement with a Hertzian analysis of fracturing at grain contacts

    Stress Distribution During Cold Compression of Rocks and Mineral Aggregates Using Synchrotron-based X-Ray Diffraction

    Get PDF
    SUMMARY We report detailed procedures for compression experiments on rocks and mineral aggregates within a multi-anvil deformation apparatus coupled with synchrotron X-radiation. Such experiments allow quantification of the stress distribution within samples, that ultimately sheds light on compaction processes in geomaterials

    BK Channels Regulate Spontaneous Action Potential Rhythmicity in the Suprachiasmatic Nucleus

    Get PDF
    Background: Circadian (,24 hr) rhythms are generated by the central pacemaker localized to the suprachiasmatic nucleus (SCN) of the hypothalamus. Although the basis for intrinsic rhythmicity is generally understood to rely on transcription factors encoded by ‘‘clock genes’’, less is known about the daily regulation of SCN neuronal activity patterns that communicate a circadian time signal to downstream behaviors and physiological systems. Action potentials in the SCN are necessary for the circadian timing of behavior, and individual SCN neurons modulate their spontaneous firing rate (SFR) over the daily cycle, suggesting that the circadian patterning of neuronal activity is necessary for normal behavioral rhythm expression. The BK K + channel plays an important role in suppressing spontaneous firing at night in SCN neurons. Deletion of the Kcnma1 gene, encoding the BK channel, causes degradation of circadian behavioral and physiological rhythms. Methodology/Principal Findings: To test the hypothesis that loss of robust behavioral rhythmicity in Kcnma1 2/2 mice is due to the disruption of SFR rhythms in the SCN, we used multi-electrode arrays to record extracellular action potentials from acute wild-type (WT) and Kcnma1 2/2 slices. Patterns of activity in the SCN were tracked simultaneously for up to 3 days, and the phase, period, and synchronization of SFR rhythms were examined. Loss of BK channels increased arrhythmicity but also altered the amplitude and period of rhythmic activity. Unexpectedly, Kcnma1 2/2 SCNs showed increased variability in the timing of the daily SFR peak

    Stress-induced anhedonia is associated with hypertrophy of medium spiny neurons of the nucleus accumbens

    Get PDF
    There is accumulating evidence that the nucleus accumbens (NAc) has an important role in the pathophysiology of depression. As the NAc is a key component in the neural circuitry of reward, it has been hypothesized that anhedonia, a core symptom of depression, might be related to dysfunction of this brain region. Neuronal morphology and expression of plasticity-related molecules were examined in the NAc of rats displaying anhedonic behavior (measured in the sucrose-consumption test) in response to chronic mild stress. To demonstrate the relevance of our measurements to depression, we tested whether the observed changes were sensitive to reversal with antidepressants (imipramine and fluoxetine). Data show that animals displaying anhedonic behavior display an hypertrophy of medium spiny neurons in the NAc and, in parallel, have increased expression of the genes encoding for brain-derived neurotrophic factor, neural cell adhesion molecule and synaptic protein synapsin 1. Importantly, the reversal of stress-induced anhedonia by antidepressants is linked to a restoration of gene-expression patterns and dendritic morphology in the NAc. Using an animal model of depression, we show that stress induces anhedonic behavior that is associated with specific changes in the neuronal morphology and in the gene-expression profile of the NAc that are effectively reversed after treatment with antidepressants.The present work was funded by the Portuguese Foundation for Technology (FCT), project PTDC/SAU-NEU/105180/2008. FM and PL are recipients of postdoctoral fellowships and MM is recipient of a doctoral fellowship, all from FCT, Portugal

    Individualizing therapy – in search of approaches to maximize the benefit of drug treatment (II)

    Get PDF
    Adjusting drug therapy to the individual, a common approach in clinical practice, has evolved from 1) dose adjustments based on clinical effects to 2) dose adjustments made in response to drug levels and, more recently, to 3) dose adjustments based on deoxyribonucleic acid (DNA) sequencing of drug-metabolizing enzyme genes, suggesting a slow drug metabolism phenotype. This development dates back to the middle of the 20(th )century, when several different drugs were administered on the basis of individual plasma concentration measurements. Genetic control of drug metabolism was well established by the 1960s, and pharmakokinetic-based individualized therapy was in use by 1973

    Hybrid Nanowire Ion-to-Electron Transducers for Integrated Bioelectronic Circuitry

    Get PDF
    A key task in the emerging field of bioelectronics is the transduction between ionic/protonic and electronic signals at high fidelity. This is a considerable challenge since the two carrier types exhibit intrinsically different physics and are best supported by very different materials typeselectronic signals in inorganic semiconductors and ionic/protonic signals in organic or bio-organic polymers, gels, or electrolytes. Here we demonstrate a new class of organic−inorganic transducing interface featuring semiconducting nanowires electrostatically gated using a solid proton-transporting hygroscopic polymer. This model platform allows us to study the basic transducing mechanisms as well as deliver high fidelity signal conversion by tapping into and drawing together the best candidates from traditionally disparate realms of electronic materials research. By combining complementary nn- and pp-type transducers we demonstrate functional logic with significant potential for scaling toward high-density integrated bioelectronic circuitry.This work was funded by the Australian Research Council (ARC), the University of New South Wales, the University of Queensland, Danish National Research Foundation and the Innovation Fund. A.P.M. acknowledges an ARC Future Fellowship (FT0990285) and DJC acknowledges Australian Nanotechnology Network Short Term Visit support. P.M. is an ARC Discovery Outstanding Research Award Fellow and the work at UQ was funded under the ARC Discovery Program (DP140103653). The Centre for Organic Photonics and Electronics is a strategic initiative of the University of Queensland. We thank Helen Rutlidge for conducting the inductively coupled plasma mass spectrometry measurements. This work was performed in part using the NSW and ACT nodes of the Australian National Fabrication Facility (ANFF) and the Mark Wainwright Analytical Centre at UNSW

    Ovarian cancer risk and common variation in the sex hormone-binding globulin gene: a population-based case-control study

    Get PDF
    BACKGROUND: The sex hormone-binding globulin (SHBG) is a carrier protein that modulates the bio-availability of serum sex steroid hormones, which may be involved in ovarian cancer. We evaluated whether common genetic variation in SHBG and its 3' neighbor ATP1B2, in linkage disequilibrium, is associated with the risk of epithelial ovarian cancer. METHODS: The study population included 264 women with ovarian carcinoma and 625 controls participating in a population-based case-control study in Poland. Five common single nucleotide polymorphisms (SNPs) in SHGB and five in ATP1B2 were selected to capture most common variation in this region. RESULTS: None of the SNPs evaluated was significantly associated with ovarian cancer risk, including the putative functional SNPs SHBG D356N (rs6259) and -67G>A 5'UTR (rs1799941). However, our data were consistent with a decreased ovarian cancer risk associated with the variant alleles for these two SNPs, which have been previously associated with increased circulating levels of SHBG. CONCLUSION: These data do not support a substantial association between common genetic variation in SHBG and ovarian cancer risk

    Changes in bone marrow lesions in response to weight-loss in obese knee osteoarthritis patients: a prospective cohort study

    Get PDF
    BACKGROUND: Patients are susceptible for knee osteoarthritis (KOA) with increasing age and obesity and KOA is expected to become a major disabling disease in the future. An important feature of KOA on magnetic resonance imaging (MRI) is changes in the subchondral bone, bone marrow lesions (BMLs), which are related to the future degeneration of the knee joint as well as prevalent clinical symptoms. The aim of this study was to investigate the changes in BMLs after a 16-week weight-loss period in obese subjects with KOA and relate changes in BMLs to the effects of weight-loss on clinical symptoms. METHODS: This prospective cohort study included patients with a body mass index ≥ 30 kg/m(2), an age ≥ 50 years and primary KOA. Patients underwent a 16 weeks supervised diet program which included formula products and dietetic counselling (ClinicalTrials.gov: NCT00655941). BMLs in tibia and femur were assessed on MRI before and after the weight-loss using the Boston-Leeds Osteoarthritis Knee Score. Response to weight-loss in BML scores was dichotomised to patients experiencing a decrease in BML scores (responders) and patients who did not (non-responders). The association of BMLs to weight-loss was assessed by logistic regressions and correlation analyses. RESULTS: 39 patients (23%) were classified as responders in the sum of all BML size scores whereas 130 patients (77%) deteriorated or remained stable and were categorized as non-responders. Logistic regression analyses revealed no association between weight-loss < or ≥ 10% and response in BMLs in the most affected compartment (OR 1.86 [CI 0.66 to 5.26, p=0.24]). There was no association between weight-loss and response in maximum BML score (OR 1.13 [CI 0.39 to 3.28, p=0.81]). The relationship between changes in BMLs and clinical symptoms revealed that an equal proportion of patients classified as BML responders and non-responders experienced an OMERACT-OARSI response (69 vs. 71%, p=0.86). CONCLUSIONS: Weight-loss did not improve the sum of tibiofemoral BML size scores or the maximum tibiofemoral BML score, suggesting that BMLs do not respond to a rapidly decreased body weight. The missing relationship between clinical symptoms and BMLs calls for further investigation

    Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity

    Get PDF
    Treatment of onchocerciasis using mass ivermectin administration has reduced morbidity and transmission throughout Africa and Central/South America. Mass drug administration is likely to exert selection pressure on parasites, and phenotypic and genetic changes in several Onchocerca volvulus populations from Cameroon and Ghana-exposed to more than a decade of regular ivermectin treatment-have raised concern that sub-optimal responses to ivermectin's anti-fecundity effect are becoming more frequent and may spread.Pooled next generation sequencing (Pool-seq) was used to characterise genetic diversity within and between 108 adult female worms differing in ivermectin treatment history and response. Genome-wide analyses revealed genetic variation that significantly differentiated good responder (GR) and sub-optimal responder (SOR) parasites. These variants were not randomly distributed but clustered in ~31 quantitative trait loci (QTLs), with little overlap in putative QTL position and gene content between the two countries. Published candidate ivermectin SOR genes were largely absent in these regions; QTLs differentiating GR and SOR worms were enriched for genes in molecular pathways associated with neurotransmission, development, and stress responses. Finally, single worm genotyping demonstrated that geographic isolation and genetic change over time (in the presence of drug exposure) had a significantly greater role in shaping genetic diversity than the evolution of SOR.This study is one of the first genome-wide association analyses in a parasitic nematode, and provides insight into the genomics of ivermectin response and population structure of O. volvulus. We argue that ivermectin response is a polygenically-determined quantitative trait (QT) whereby identical or related molecular pathways but not necessarily individual genes are likely to determine the extent of ivermectin response in different parasite populations. Furthermore, we propose that genetic drift rather than genetic selection of SOR is the underlying driver of population differentiation, which has significant implications for the emergence and potential spread of SOR within and between these parasite populations
    • …
    corecore