34 research outputs found

    Effect of pathology type and severity on the distribution of MRI signal intensities within the degenerated nucleus pulposus: application to idiopathic scoliosis and spondylolisthesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Disc degeneration is characterized by a loss of cellularity, degradation of the extracellular matrix, and, as a result, morphological changes and biomechanical alterations. We hypothesized that the distribution of the MR signal intensity within the nucleus zone of the intervertebral disc was modified according to the pathology and the severity of the pathology. The objective of this study was to propose new parameters characterizing the distribution of the signal intensity within the nucleus zone of lumbar intervertebral discs, and to quantify these changes in patients suffering from spondylolisthesis or idiopathic scoliosis.</p> <p>Methods</p> <p>A retrospective study had been performed on T2-weighted MR images of twenty nine patients suffering from spondylolisthesis and/or scoliosis. The high intensity zone of the nucleus pulposus was semi-automatically detected. The distance "DX" between the center weighted by the signal intensity and the geometrical center was quantified. The sum of the signal intensity on the axis perpendicular to the longitudinal axis of the disc was plotted for each position of the longitudinal axis allowing defining the maximum sum "SM" and its position "PSM".</p> <p>Results</p> <p>"SM" was clearly higher and "PSM" was more shifted for scoliosis than for spondylolisthesis. A two-way analysis of variance showed that the differences observed on "DX" were not attributed to the pathology nor its severity, the differences observed on "SM" were attributed to the pathology but not to its severity, and the differences observed on "PSM" were attributed to both the pathology and its severity.</p> <p>Conclusions</p> <p>The technique proposed in this study showed significant differences in the distribution of the MR signal intensity within the nucleus zone of intervertebral discs due to the pathology and its severity. The dependence of the "PSM" parameter to the severity of the pathology suggests this parameter as a predictive factor of the pathology progression. This new technique should be useful for the early diagnosis of intervertebral disc pathologies as it highlights abnormal patterns in the MRI signal for low severity of the pathology.</p

    A Multi-Host Agent-Based Model for a Zoonotic, Vector-Borne Disease. A Case Study on Trypanosomiasis in Eastern Province, Zambia

    Get PDF
    Background: This paper presents a new agent-based model (ABM) for investigating T. b. rhodesiense human African trypanosomiasis (rHAT) disease dynamics, produced to aid a greater understanding of disease transmission, and essential for development of appropriate mitigation strategies. Methods: The ABM was developed to model rHAT incidence at a fine spatial scale along a 75 km transect in the Luangwa Valley, Zambia. The method offers a complementary approach to traditional compartmentalised modelling techniques, permitting incorporation of fine scale demographic data such as ethnicity, age and gender into the simulation. Results: Through identification of possible spatial, demographic and behavioural characteristics which may have differing implications for rHAT risk in the region, the ABM produced output that could not be readily generated by other techniques. On average there were 1.99 (S.E. 0.245) human infections and 1.83 (S.E. 0.183) cattle infections per 6 month period. The model output identified that the approximate incidence rate (per 1000 person-years) was lower amongst cattle owning households (0.079, S.E. 0.017), than those without cattle (0.134, S.E. 0.017). Immigrant tribes (e.g. Bemba I.R. = 0.353, S.E.0.155) and school-age children (e.g. 5ā€“10 year old I.R. = 0.239, S.E. 0.041) were the most at-risk for acquiring infection. These findings have the potential to aid the targeting of future mitigation strategies. Conclusion: ABMs provide an alternative way of thinking about HAT and NTDs more generally, offering a solution to the investigation of local-scale questions, and which generate results that can be easily disseminated to those affected. The ABM can be used as a tool for scenario testing at an appropriate spatial scale to allow the design of logistically feasible mitigation strategies suggested by model output. This is of particular importance where resources are limited and management strategies are often pushed to the local scale. Ā© 2016 Alderton et al
    corecore