10 research outputs found
Corticortophin releasing factor 2 receptor agonist treatment significantly slows disease progression in mdx mice
<p>Abstract</p> <p>Background</p> <p>Duchenne muscular dystrophy results from mutation of the dystrophin gene, causing skeletal and cardiac muscle loss of function. The mdx mouse model of Duchenne muscular dystrophy is widely utilized to evaluate the potential of therapeutic regimens to modulate the loss of skeletal muscle function associated with dystrophin mutation. Importantly, progressive loss of diaphragm function is the most consistent striated muscle effect observed in the mdx mouse model, which is the same as in patients suffering from Duchenne muscular dystrophy.</p> <p>Methods</p> <p>Using the mdx mouse model, we have evaluated the effect that corticotrophin releasing factor 2 receptor (CRF2R) agonist treatment has on diaphragm function, morphology and gene expression.</p> <p>Results</p> <p>We have observed that treatment with the potent CRF2R-selective agonist PG-873637 prevents the progressive loss of diaphragm specific force observed during aging of mdx mice. In addition, the combination of PG-873637 with glucocorticoids not only prevents the loss of diaphragm specific force over time, but also results in recovery of specific force. Pathological analysis of CRF2R agonist-treated diaphragm muscle demonstrates that treatment reduces fibrosis, immune cell infiltration, and muscle architectural disruption. Gene expression analysis of CRF2R-treated diaphragm muscle showed multiple gene expression changes including globally decreased immune cell-related gene expression, decreased extracellular matrix gene expression, increased metabolism-related gene expression, and, surprisingly, modulation of circadian rhythm gene expression.</p> <p>Conclusion</p> <p>Together, these data demonstrate that CRF2R activation can prevent the progressive degeneration of diaphragm muscle associated with dystrophin gene mutation.</p
Antibody testing for COVID-19: A report from the National COVID Scientific Advisory Panel [version 1; peer review: awaiting peer review]
Background: The COVID-19 pandemic caused >1 million infections during January-March 2020. There is an urgent need for reliable antibody detection approaches to support diagnosis, vaccine development, safe release of individuals from quarantine, and population lock-down exit strategies. We set out to evaluate the performance of ELISA and lateral flow immunoassay (LFIA) devices.
Methods: We tested plasma for COVID (severe acute respiratory syndrome coronavirus 2; SARS-CoV-2) IgM and IgG antibodies by ELISA and using nine different LFIA devices. We used a panel of plasma samples from individuals who have had confirmed COVID infection based on a PCR result (n=40), and pre-pandemic negative control samples banked in the UK prior to December-2019 (n=142).
Results: ELISA detected IgM or IgG in 34/40 individuals with a confirmed history of COVID infection (sensitivity 85%, 95%CI 70-94%), vs. 0/50 pre-pandemic controls (specificity 100% [95%CI 93-100%]). IgG levels were detected in 31/31 COVID-positive individuals tested ≥10 days after symptom onset (sensitivity 100%, 95%CI 89-100%). IgG titres rose during the 3 weeks post symptom onset and began to fall by 8 weeks, but remained above the detection threshold. Point estimates for the sensitivity of LFIA devices ranged from 55-70% versus RT-PCR and 65-85% versus ELISA, with specificity 95-100% and 93-100% respectively. Within the limits of the study size, the performance of most LFIA devices was similar.
Conclusions: Currently available commercial LFIA devices do not perform sufficiently well for individual patient applications. However, ELISA can be calibrated to be specific for detecting and quantifying SARS-CoV-2 IgM and IgG and is highly sensitive for IgG from 10 days following first symptoms
Measured versus modeled dietary arsenic and relation to urinary arsenic excretion and total exposure
A comprehensive transcriptional map of primate brain development
The transcriptional underpinnings of brain development remain poorly understood, particularly in humans and closely related non-human primates. We describe a high resolution transcriptional atlas of rhesus monkey brain development that combines dense temporal sampling of prenatal and postnatal periods with fine anatomical parcellation of cortical and subcortical regions associated with human neuropsychiatric disease. Gene expression changes more rapidly before birth, both in progenitor cells and maturing neurons, and cortical layers and areas acquire adult-like molecular profiles surprisingly late postnatally. Disparate cell populations exhibit distinct developmental timing but also unexpected synchrony of processes underlying neural circuit construction including cell projection and adhesion. Candidate risk genes for neurodevelopmental disorders including primary microcephaly, autism spectrum disorder, intellectual disability, and schizophrenia show disease-specific spatiotemporal enrichment within developing neocortex. Human developmental expression trajectories are more similar to monkey than rodent, and approximately 9% of genes show human-specific regulation with evidence for prolonged maturation or neoteny