20 research outputs found

    Biochemical and Structural Insights into the Mechanisms of SARS Coronavirus RNA Ribose 2′-O-Methylation by nsp16/nsp10 Protein Complex

    Get PDF
    The 5′-cap structure is a distinct feature of eukaryotic mRNAs, and eukaryotic viruses generally modify the 5′-end of viral RNAs to mimic cellular mRNA structure, which is important for RNA stability, protein translation and viral immune escape. SARS coronavirus (SARS-CoV) encodes two S-adenosyl-L-methionine (SAM)-dependent methyltransferases (MTase) which sequentially methylate the RNA cap at guanosine-N7 and ribose 2′-O positions, catalyzed by nsp14 N7-MTase and nsp16 2′-O-MTase, respectively. A unique feature for SARS-CoV is that nsp16 requires non-structural protein nsp10 as a stimulatory factor to execute its MTase activity. Here we report the biochemical characterization of SARS-CoV 2′-O-MTase and the crystal structure of nsp16/nsp10 complex bound with methyl donor SAM. We found that SARS-CoV nsp16 MTase methylated m7GpppA-RNA but not m7GpppG-RNA, which is in contrast with nsp14 MTase that functions in a sequence-independent manner. We demonstrated that nsp10 is required for nsp16 to bind both m7GpppA-RNA substrate and SAM cofactor. Structural analysis revealed that nsp16 possesses the canonical scaffold of MTase and associates with nsp10 at 1∶1 ratio. The structure of the nsp16/nsp10 interaction interface shows that nsp10 may stabilize the SAM-binding pocket and extend the substrate RNA-binding groove of nsp16, consistent with the findings in biochemical assays. These results suggest that nsp16/nsp10 interface may represent a better drug target than the viral MTase active site for developing highly specific anti-coronavirus drugs

    Organic pollutants in sea-surface microlayer and aerosol in thecoastal environment of Leghorn—(Tyrrhenian Sea)

    Get PDF
    The levels of dissolved and particle-associated n-alkanes, alkylbenzenes, phthalates, PAHs, anionic surfactants and surfactant fluorescent organic matter ŽSFOM. were measured in sea-surface microlayer ŽSML. and sub-surface water ŽSSL. samples collected in the Leghorn marine environment in September and October 1999. Nine stations, located in the Leghorn harbour and at increasing distances from the Port, were sampled three times on the same day. At all the stations, SML concentrations of the selected organic compounds were significantly higher than SSL values and the enrichment factors ŽEFsSML concentrationrSSL concentration. were greater in the particulate phase than in the dissolved phase. SML concentrations varied greatly among the sampling sites, the highest levels Žn-alkanes 3674 mgrl, phthalates 177 mgrl, total PAHs 226 mgrl. being found in the particulate phase in the Leghorn harbour. To improve the knowledge on pollutant exchanges between sea-surface waters and atmosphere, the validity of spray drop adsorption model ŽSDAM. was verified for SFOM, surface-active agents, such as phthalates, and compounds which can interact with SFOM, such as n-alkanes and PAHs. q2001 Elsevier Science B.V. All rights reserved

    Artificial microenvironment of in vitro glioblastoma cell cultures changes profile of miRNAs related to tumor drug resistance

    No full text
    Monika Witusik-Perkowska,1 Magdalena Zakrzewska,2 Dariusz J Jaskolski,3 Pawel P Liberski,2 Janusz Szemraj11Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland; 2Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland; 3Department of Neurosurgery and Neurooncology, Medical University of Lodz, Barlicki University Hospital, Lodz, PolandPurpose: The in vitro environment can influence not only the molecular background of glioblastoma drug-resistance and treatment efficiency, but also the mechanisms and pathways of cell death. Both crucial molecular pathways and the deregulation of miRNAs are thought to participate in tumor therapy-resistance. The aim of our study is to examine the potential influence of ex vivo conditions on the expression of miRNAs engaged in the machinery of tumor-drug resistance, since in vitro models are commonly used for testing new therapeutics.Methods: Glioblastoma-derived cells, cultured under three different sets of conditions, were used as experimental models in vitro. The expression of 84 miRNAs relevant to brain tumorigenesis was evaluated by multi-miRNA profiling for initial tumors and their corresponding cultures. Finally, the expression of selected miRNAs related to temozolomide-resistance (miR-125b, miR-130a, miR-21, miR-221, miR-222, miR-31, miR-149, miR-210, miR-181a) was assessed by real-time PCR for each tumor and neoplastic cells in cultures.Results: Our results demonstrate significant discrepancies in the expression of several miRNAs between tumor cells in vivo and in vitro, with miR-130a, miR-221, miR-31, miR-21, miR-222, miR-210 being the most marked. Also differences were observed between particular models in vitro. The results of computational analysis revealed the interplay between examined miRNAs and their targets involved in processes of glioblastoma chemosensitivity, including the genes relevant to temozolomide response (MGMT, PTEN, MDM2, TP53, BBC3A).Conclusion: The artificial environment may influence the selective proliferation of cell populations carrying specific patterns of miRNAs and/or the phenotype of neoplastic cells (eg differentiation) by the action of molecular events including miRNAs. These phenomena may influence the tumor-responsiveness to particular drugs, disturbing the evaluation of their efficacy in vitro, with unpredictable results caused by the interdependency of molecular pathways.Keywords: glioblastoma, cell culture, drug-resistance, miRNA, temozolomid

    The absence of VGLUT3 predisposes to cocaine abuse by increasing dopamine and glutamate signaling in the nucleus accumbens

    No full text
    Tonically active cholinergic interneurons (TANs) from the nucleus accumbens (NAc) are centrally involved in reward behavior. TANs express a vesicular glutamate transporter referred to as VGLUT3 and thus use both acetylcholine and glutamate as neurotransmitters. The respective roles of each transmitter in the regulation of reward and addiction are still unknown. In this study, we showed that disruption of the gene that encodes VGLUT3 (Slc17a8) markedly increased cocaine self-administration in mice. Concomitantly, the amount of dopamine (DA) release was strongly augmented in the NAc of VGLUT3(-/-) mice because of a lack of signaling by metabotropic glutamate receptors. Furthermore, dendritic spines and glutamatergic synaptic transmission on medium spiny neurons were increased in the NAc of VGLUT3(-/-) mice. Increased DA and glutamate signaling in the NAc are hallmarks of addiction. Our study shows that TANs use glutamate to reduce DA release and decrease reinforcing properties of cocaine in mice. Interestingly, we also observed an increased frequency of rare variations in SLC17A8 in a cohort of severe drug abusers compared with controls. Our findings identify VGLUT3 as an unexpected regulator of drug abuse.This research was supported by funds from ANR (ANR-09-MNPS-033, ANR-13-SAMA-0005-01), Équipe FRM DEQ20130326486, FRC, Brain Canada Multi-Investigator Research Initiative, Djavad Mowafaghian Foundation, ERANET-Neuron Joint Transnational Call for "European Research Projects on Mental Disorders", INSERM, CNRS and UPMC. The research teams of SEM, SJ, MM, JC-PV, BG and FB are members of the Bio-Psy Laboratory of Excellence; this work was therefore supported by French state funds managed by the ANR within the Investissements d'Avenir program under reference ANR-11-IDEX-0004-02. DYS was funded by the École des Neurosciences de Paris. This work was also supported by the City of Paris and Inserm Atip-Avenir to MM. FV was supported by grants from the Mission Interministérielle de Lutte contre la Drogue et la Toxicomanie (MILDT, 2006); the Département de la Recherche Clinique et du Développement-Assistance Publique Hôpitaux de Paris (DRCD-APHP,OST07013); and from the Programme Hospitalier de Recherches Cliniques (PHRC program,AOM10165). The Cellular Imaging and Flow Cytometry Facility is supported by the Conseil Régional Ile-de-France
    corecore