1,985 research outputs found

    11-interval PFG pulse sequence for improved measurement of fast velocities of fluids with high diffusivity in systems with short T2(∗).

    Get PDF
    Magnetic resonance (MR) was used to measure SF6 gas velocities in beds filled with particles of 1.1 mm and 0.5 mm in diameter. Four pulse sequences were tested: a traditional spin echo pulse sequence, the 9-interval and 13-interval pulse sequence of Cotts et al. (1989) and a newly developed 11-interval pulse sequence. All pulse sequences measured gas velocity accurately in the region above the particles at the highest velocities that could be achieved (up to 0.1 ms(-1)). The spin echo pulse sequence was unable to measure gas velocity accurately in the bed of particles, due to effects of background gradients, diffusivity and acceleration in flow around particles. The 9- and 13-interval pulse sequence measured gas velocity accurately at low flow rates through the particles (expected velocity <0.06 ms(-1)), but could not measure velocity accurately at higher flow rates. The newly developed 11-interval pulse sequence was more accurate than the 9- and 13-interval pulse sequences at higher flow rates, but for velocities in excess of 0.1 ms(-1) the measured velocity was lower than the expected velocity. The increased accuracy arose from the smaller echo time that the new pulse sequence enabled, reducing selective attenuation of signal from faster moving nuclei.CMB acknowledges the Gates Cambridge Trust for funding his research.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.jmr.2016.01.02

    Group Leaders Optimization Algorithm

    Full text link
    We present a new global optimization algorithm in which the influence of the leaders in social groups is used as an inspiration for the evolutionary technique which is designed into a group architecture. To demonstrate the efficiency of the method, a standard suite of single and multidimensional optimization functions along with the energies and the geometric structures of Lennard-Jones clusters are given as well as the application of the algorithm on quantum circuit design problems. We show that as an improvement over previous methods, the algorithm scales as N^2.5 for the Lennard-Jones clusters of N-particles. In addition, an efficient circuit design is shown for two qubit Grover search algorithm which is a quantum algorithm providing quadratic speed-up over the classical counterpart

    Measurement of bubble sizes in fluidised beds using electrical capacitance tomography

    Get PDF
    Electrical capacitance tomography (ECT) provides a means for non-invasively imaging multiphase flows, such as those in fluidised beds. Traditionally ECT images are reconstructed using the assumption that the distribution of permittivity varies smoothly throughout the sensor region. However, for many applications there are step changes in the permittivity, for example, between the bubble and particulate phases in a fluidised bed, and the assumption of smoothness is flawed. In this article a Total Variation Iterative Soft Thresholding (TV-IST) algorithm is used to reconstruct ECT images that allows for sharp transitions in the permittivity distribution. This new algorithm has been compared with established algorithms for ECT image reconstruction. It was found that the TV-IST algorithm reduced the sensitivity to the threshold level chosen when extracting measurements of bubble size from ECT data sets. Measurements of the bubble size distribution in the fluidised bed using the TV-IST algorithm agreed closely with established empirical correlations for the size of bubbles. The results demonstrate that ECT can provide accurate and high spatial resolution measurements of features such as bubbles in gas-solid fluidised beds.The authors would like to thank the EPSRC (Grants no. EP/K008218/1 and EP/F041772/1) and the Isaac Newton Trust for financial support.This paper was originally published in Chemical Engineering Science (Chandrasekera TC, Li Y, Moody D, Schnellmann MA, Dennis JS, Holland DJ, Chemical Engineering Science 2015, 126, 679–687, doi:10.1016/j.ces.2015.01.011)

    A comparison of magnetic resonance, X-ray and positron emission particle tracking measurements of a single jet of gas entering a bed of particles

    Get PDF
    Measurements of the lengths of a single jet of gas entering a packed bed were made using magnetic resonance imaging (MRI), positron emission particle tracking (PEPT) and X-ray radiography and the results compared. The experiments were performed using a Perspex bed (50 mm i.d.) of poppy seeds: air at 298 K was admitted to the base of the bed through a single, central orifice, 2 mm in diameter. Poppy seeds (Geldart Group B, measured minimum fluidisation velocity with air at 298 K and 1 atm of 0.13 m/s and particle density ~1060 kg/m3) were used because of their high content of oil, which contains mobile protons and hence is suitable for MRI examination. The lengths of jet measured using the three techniques were in agreement between 50 m/s < Uo < 100 m/s, where Uo is the superficial velocity through the orifice. Below Uo = 50 m/s, X-ray measurements of jet lengths were shorter than those measured using MRI. This was attributed to the minimum diameter of void, found to be 5 mm, detectable in a 50 mm bed using ultra-fast X-ray measurements. PEPT is most commonly used to calculate particle velocities, whilst jet lengths are usually calculated from determinations of voidage. However, the particle locations determined in this work by PEPT were used to calculate a fractional occupancy count, from which a jet length could be inferred.RCUK, OtherThis is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.ces.2014.09.02

    Genome-wide analysis of long noncoding RNAs, 24-nt siRNAs, DNA methylation and H3K27me3 marks in Brassica rapa

    Full text link
    Long noncoding RNAs (lncRNAs) are RNA fragments that generally do not code for a protein but are involved in epigenetic gene regulation. In this study, lncRNAs of Brassica rapa were classified into long intergenic noncoding RNAs, natural antisense RNAs, and intronic noncoding RNAs and their expression analyzed in relation to genome-wide 24-nt small interfering RNAs (siRNAs), DNA methylation, and histone H3 lysine 27 trimethylation marks (H3K27me3). More than 65% of the lncRNAs analyzed consisted of one exon, and more than 55% overlapped with inverted repeat regions (IRRs). Overlap of lncRNAs with IRRs or genomic regions encoding for 24-nt siRNAs resulted in increased DNA methylation levels when both were present. LncRNA did not overlap greatly with H3K27me3 marks, but the expression level of intronic noncoding RNAs that did coincide with H3K27me3 marks was higher than without H3K27me3 marks. The Brassica genus comprises important vegetables and oil seed crops grown across the world. B. rapa is a diploid (AA genome) thought to be one of the ancestral species of both B. juncea (AABB genome) and B. napus (AACC) through genome merging (allotetrapolyploidization). Complex genome restructuring and epigenetic alterations are thought to be involved in these allotetrapolyploidization events. Comparison of lncRNAs between B. rapa and B. nigra, B. oleracea, B. juncea, and B. napus showed the highest conservation with B. oleracea. This study presents a comprehensive analysis of the epigenome structure of B. rapa at multi-epigenetic levels (siRNAs, DNA methylation, H3K27me3, and lncRNAs) and identified a suite of candidate lncRNAs that may be epigenetically regulated in the Brassica genus

    Metastases: the glycan connection

    Get PDF
    An association between protein glycosylation and tumorigenesis has been recognized for over 10 years. Associations linking the importance of glycosylation events to tumor biology, especially the progression to metastatic disease, have been noted over many years, Recently, a mouse model in which β1,6-N-acetylglucosaminyltransferase V (a rate-limiting enzyme in the N-glycan pathway) has been knocked out, was used to demonstrate the importance of glycosylation in tumor progression. By crossing mice lacking this enzyme with a transgenic mouse model of metastatic breast cancer, metastatic progression of the disease was dramatically reduced. These experiments provide in vivo evidence for the role of N-linked glycosylation in metastatic breast cancer and have significant implications for the development of new treatment strategies

    Electrical stimulation devices for the prevention of venous thromboembolism: Preliminary studies of physiological efficacy and user satisfaction.

    Get PDF
    Introduction: Electrical stimulation could provide an alternative method for preventing venous thromboembolism in stroke patients. The purpose of this preliminary study was to explore the effects of electrical stimulation and intermittent pneumatic compression on enhancing lower limb venous return in healthy and chronic stroke patients and also to evaluate patient and nurse satisfaction. Methods: We investigated the effectiveness of two electrical stimulation devices: Geko (Firstkind Ltd, High Wycombe, UK) and Orthopaedic Microstim 2V2 (Odstock Medical Ltd, Salisbury, UK); and one intermittent pneumatic compression device: Huntleigh Flowstron Universal (Huntleigh Healthcare Ltd, Cardiff, UK). We recruited 12 healthy and 5 chronic stroke participants. The devices were fitted sequentially, and Doppler ultrasound measurements were taken. Eight patients and nurses were also recruited for a separate usability evaluation. Results: The electrical stimulation devices emulated the blood flow characteristics of intermittent pneumatic compression in both healthy and stroke participants provided that the intensity of electrical stimulation was sufficient. Patients and nurses also felt that the electrical stimulation devices were acceptable. Conclusions: Electrical stimulation may offer benefit as an alternative method for venous thromboembolism prevention in stroke patients. The apparent benefit is sufficient to warrant further investigation in a full powered randomised controlled trial

    p70 S6 kinase and actin dynamics: A perspective

    Get PDF
    p70 S6 kinase (p70S6K), a member of the AGC serine/threonine kinase family, was initially identified as a key player, together with its downstream effector S6, in the regulation of cellular growth and survival. The p70S6K protein has emerged in recent years as a multifunctional protein which also regulates the actin cytoskeleton and thus plays a role in cell migration. This new function is through two important activities of p70S6K, namely actin cross-linking and Rac1 and Cdc42 activation. The testis is critically dependent on an intricate balance of fundamental cellular processes such as adhesion, migration, and differentiation. It is increasingly evident that Rho GTPases and actin binding proteins play fundamental roles in regulating spermatogenesis within the testis. In this review, we will discuss current findings of p70S6K in the control of actin cytoskeleton dynamics. In addition, the potential role of p70S6K in spermatogenesis and testicular function will be highlighted

    DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis

    Get PDF
    © 2014 Le et al. Background: DNA demethylases regulate DNA methylation levels in eukaryotes. Arabidopsis encodes four DNA demethylases, DEMETER (DME), REPRESSOR OF SILENCING 1 (ROS1), DEMETER-LIKE 2 (DML2), and DML3. While DME is involved in maternal specific gene expression during seed development, the biological function of the remaining DNA demethylases remains unclear. Results: We show that ROS1, DML2, and DML3 play a role in fungal disease resistance in Arabidopsis. A triple DNA demethylase mutant, rdd (ros1 dml2 dml3), shows increased susceptibility to the fungal pathogen Fusarium oxysporum. We identify 348 genes differentially expressed in rdd relative to wild type, and a significant proportion of these genes are downregulated in rdd and have functions in stress response, suggesting that DNA demethylases maintain or positively regulate the expression of stress response genes required for F. oxysporum resistance. The rdd-downregulated stress response genes are enriched for short transposable element sequences in their promoters. Many of these transposable elements and their surrounding sequences show localized DNA methylation changes in rdd, and a general reduction in CHH methylation, suggesting that RNA-directed DNA methylation (RdDM), responsible for CHH methylation, may participate in DNA demethylase-mediated regulation of stress response genes. Many of the rdd-downregulated stress response genes are downregulated in the RdDM mutants nrpd1 and nrpe1, and the RdDM mutants nrpe1 and ago4 show enhanced susceptibility to F. oxysporum infection. Conclusions: Our results suggest that a primary function of DNA demethylases in plants is to regulate the expression of stress response genes by targeting promoter transposable element sequences
    corecore