9 research outputs found

    Mapping carcass and meat quality QTL on Sus Scrofa chromosome 2 in commercial finishing pigs

    Get PDF
    Quantitative trait loci (QTL) affecting carcass and meat quality located on SSC2 were identified using variance component methods. A large number of traits involved in meat and carcass quality was detected in a commercial crossbred population: 1855 pigs sired by 17 boars from a synthetic line, which where homozygous (A/A) for IGF2. Using combined linkage and linkage disequilibrium mapping (LDLA), several QTL significantly affecting loin muscle mass, ham weight and ham muscles (outer ham and knuckle ham) and meat quality traits, such as Minolta-L* and -b*, ultimate pH and Japanese colour score were detected. These results agreed well with previous QTL-studies involving SSC2. Since our study is carried out on crossbreds, different QTL may be segregating in the parental lines. To address this question, we compared models with a single QTL-variance component with models allowing for separate sire and dam QTL-variance components. The same QTL were identified using a single QTL variance component model compared to a model allowing for separate variances with minor differences with respect to QTL location. However, the variance component method made it possible to detect QTL segregating in the paternal line (e.g. HAMB), the maternal lines (e.g. Ham) or in both (e.g. pHu). Combining association and linkage information among haplotypes improved slightly the significance of the QTL compared to an analysis using linkage information only

    Population-Specific Responses to Interspecific Competition in the Gut Microbiota of Two Atlantic Salmon (Salmo salar) Populations

    Get PDF
    The gut microbial community in vertebrates plays a role in nutrient digestion and absorption, development of intestine and immune systems, resistance to infection, regulation of bone mass and even host behavior and can thus impact host fitness. Atlantic salmon (Salmo salar) reintroduction efforts into Lake Ontario, Canada, have been unsuccessful, likely due to competition with non-native salmonids. In this study, we explored interspecific competition effects on the gut microbiota of two Atlantic salmon populations (LaHave and Sebago) resulting from four non-native salmonids. After 10 months of rearing in semi-natural stream tanks under six interspecific competition treatments, we characterized the gut microbiota of 178 Atlantic salmon by parallel sequencing the 16S rRNA gene. We found 3978 bacterial OTUs across all samples. Microbiota alpha diversity and abundance of 27 OTUs significantly differed between the two populations. Interspecific competition reduced relative abundance of potential beneficial bacteria (six genera of lactic acid bacteria) as well as 13 OTUs, but only in the LaHave population, indicating population-specific competition effects. The pattern of gut microbiota response to interspecific competition may reflect local adaptation of the host-microbiota interactions and can be used to select candidate populations for improved species reintroduction success

    Metabolomics: current state and evolving methodologies and tools

    No full text
    corecore