306 research outputs found

    Determinants of selenium status in healthy adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Selenium (Se) status in non-deficient subjects is typically assessed by the Se contents of plasma/serum. That pool comprises two functional, specific selenoprotein components and at least one non-functional, non-specific components which respond differently to changes in Se intake. A more informative means of characterizing Se status in non-deficient individuals is needed.</p> <p>Methods</p> <p>Multiple biomarkers of Se status (plasma Se, serum selenoprotein P [SEPP1], plasma glutathione peroxidase activity [GPX3], buccal cell Se, urinary Se) were evaluated in relation to selenoprotein genotypes (GPX1, GPX3, SEPP1, SEP15), dietary Se intake, and parameters of single-carbon metabolism in a cohort of healthy, non-Se-deficient men (n = 106) and women (n = 155).</p> <p>Conclusions</p> <p>Plasma Se concentration was 142.0 ± 23.5 ng/ml, with GPX3 and serum-derived SEPP1 calculated to comprise 20% and 34%, respectively, of that total. The balance, comprised of non-specific components, accounted for virtually all of the interindividual variation in total plasma Se. Buccal cell Se was associated with age and plasma homocysteine (hCys), but not plasma Se. SEPP1 showed a quadratic relationship with body mass index, peaking at BMI 25-30. Urinary Se was greater in women than men, and was associated with metabolic body weight (kg<sup>0.75</sup>), plasma folate, vitamin B<sub>12 </sub>and hCys (negatively). One <it>GPX1 </it>genotype (679T/T) was associated with significantly lower plasma Se levels than other allelic variants. Selenium intake, estimated from food frequency questionnaires, did not predict Se status as indicated by any biomarker. These results show that genotype, methyl-group status and BMI contribute to variation in Se biomarkers in Se-adequate individuals.</p

    Progestogens to prevent preterm birth in twin pregnancies: an individual participant data meta-analysis of randomized trials

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Preterm birth is the principal factor contributing to adverse outcomes in multiple pregnancies. Randomized controlled trials of progestogens to prevent preterm birth in twin pregnancies have shown no clear benefits. However, individual studies have not had sufficient power to evaluate potential benefits in women at particular high risk of early delivery (for example, women with a previous preterm birth or short cervix) or to determine adverse effects for rare outcomes such as intrauterine death.</p> <p>Methods/design</p> <p>We propose an individual participant data meta-analysis of high quality randomized, double-blind, placebo-controlled trials of progestogen treatment in women with a twin pregnancy. The primary outcome will be adverse perinatal outcome (a composite measure of perinatal mortality and significant neonatal morbidity). Missing data will be imputed within each original study, before data of the individual studies are pooled. The effects of 17-hydroxyprogesterone caproate or vaginal progesterone treatment in women with twin pregnancies will be estimated by means of a random effects log-binomial model. Analyses will be adjusted for variables used in stratified randomization as appropriate. Pre-specified subgroup analysis will be performed to explore the effect of progestogen treatment in high-risk groups.</p> <p>Discussion</p> <p>Combining individual patient data from different randomized trials has potential to provide valuable, clinically useful information regarding the benefits and potential harms of progestogens in women with twin pregnancy overall and in relevant subgroups.</p

    Delayed mGluR5 activation limits neuroinflammation and neurodegeneration after traumatic brain injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Traumatic brain injury initiates biochemical processes that lead to secondary neurodegeneration. Imaging studies suggest that tissue loss may continue for months or years after traumatic brain injury in association with chronic microglial activation. Recently we found that metabotropic glutamate receptor 5 (mGluR5) activation by (<it>RS</it>)-2-chloro-5-hydroxyphenylglycine (CHPG) decreases microglial activation and release of associated pro-inflammatory factors <it>in vitro</it>, which is mediated in part through inhibition of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Here we examined whether delayed CHPG administration reduces chronic neuroinflammation and associated neurodegeneration after experimental traumatic brain injury in mice.</p> <p>Methods</p> <p>One month after controlled cortical impact traumatic brain injury, C57Bl/6 mice were randomly assigned to treatment with single dose intracerebroventricular CHPG, vehicle or CHPG plus a selective mGluR5 antagonist, 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine. Lesion volume, white matter tract integrity and neurological recovery were assessed over the following three months.</p> <p>Results</p> <p>Traumatic brain injury resulted in mGluR5 expression in reactive microglia of the cortex and hippocampus at one month post-injury. Delayed CHPG treatment reduced expression of reactive microglia expressing NADPH oxidase subunits; decreased hippocampal neuronal loss; limited lesion progression, as measured by repeated T2-weighted magnetic resonance imaging (at one, two and three months) and white matter loss, as measured by high field <it>ex vivo </it>diffusion tensor imaging at four months; and significantly improved motor and cognitive recovery in comparison to the other treatment groups.</p> <p>Conclusion</p> <p>Markedly delayed, single dose treatment with CHPG significantly improves functional recovery and limits lesion progression after experimental traumatic brain injury, likely in part through actions at mGluR5 receptors that modulate neuroinflammation.</p

    Knockdown of Amyloid Precursor Protein in Zebrafish Causes Defects in Motor Axon Outgrowth

    Get PDF
    Amyloid precursor protein (APP) plays a pivotal role in Alzheimer’s disease (AD) pathogenesis, but its normal physiological functions are less clear. Combined deletion of the APP and APP-like protein 2 (APLP2) genes in mice results in post-natal lethality, suggesting that APP performs an essential, if redundant, function during embryogenesis. We previously showed that injection of antisense morpholino to reduce APP levels in zebrafish embryos caused convergent-extension defects. Here we report that a reduction in APP levels causes defective axonal outgrowth of facial branchiomotor and spinal motor neurons, which involves disorganized axonal cytoskeletal elements. The defective outgrowth is caused in a cell-autonomous manner and both extracellular and intracellular domains of human APP are required to rescue the defective phenotype. Interestingly, wild-type human APP rescues the defective phenotype but APPswe mutation, which causes familial AD, does not. Our results show that the zebrafish model provides a powerful system to delineate APP functions in vivo and to study the biological effects of APP mutations

    A case–control study of selenium in nails and prostate cancer risk in British men

    Get PDF
    In view of the experimental evidence suggesting that the micronutrient selenium reduces prostate cancer risk, we investigated the association between the selenium level in fingernails, a measure of long-term selenium intake, and prostate cancer risk in a case-control study among 656 British men, conducted in 1989-1992. Nail clippings were taken at the time of recruitment and selenium concentration, measured using neutron activation techniques, was successfully assayed for 300 case-control pairs and varied six-fold among the controls (0.59 p.p.m.; interquartile range, 0.50-0.71 p.p.m.). Nail selenium concentration was not significantly associated with prostate cancer risk: men in the highest quartile of nail selenium had a slightly increased risk compared with men in the lowest quartile (OR 1.24, 95 CI, 0.73-2.10); for advanced prostate cancer, men in the highest quartile had a slightly reduced risk compared with men in the lowest quartile (OR 0.78, 95% CI, 0.27-2.25). These results suggest that selenium is not strongly associated with prostate cancer risk in British men

    Expression of miRNAs and Their Cooperative Regulation of the Pathophysiology in Traumatic Brain Injury

    Get PDF
    Traumatic brain injury (TBI) is a leading cause of injury-related death and disability worldwide. Effective treatment for TBI is limited and many TBI patients suffer from neuropsychiatric sequelae. The molecular and cellular mechanisms underlying the neuronal damage and impairment of mental abilities following TBI are largely unknown. Here we used the next generation sequencing platform to delineate miRNA transcriptome changes in the hippocampus at 24 hours and 7 days following TBI in the rat controlled cortical impact injury (CCI) model, and developed a bioinformatic analysis to identify cellular activities that are regulated by miRNAs differentially expressed in the CCI brains. The results of our study indicate that distinct sets of miRNAs are regulated at different post-traumatic times, and suggest that multiple miRNA species cooperatively regulate cellular pathways for the pathological changes and management of brain injury. The distinctive miRNAs expression profiles at different post-CCI times may be used as molecular signatures to assess TBI progression. In addition to known pathophysiological changes, our study identifies many other cellular pathways that are subjected to modification by differentially expressed miRNAs in TBI brains. These pathways can potentially be targeted for development of novel TBI treatment
    corecore