200 research outputs found

    Insulin resistance disrupts epithelial repair and niche-progenitor Fgf signaling during chronic liver injury

    Get PDF
    Insulin provides important information to tissues about feeding behavior and energy status. Defective insulin signaling is associated with ageing, tissue dysfunction, and impaired wound healing. In the liver, insulin resistance leads to chronic damage and fibrosis, but it is unclear how tissue-repair mechanisms integrate insulin signals to coordinate an appropriate injury response or how they are affected by insulin resistance. In this study, we demonstrate that insulin resistance impairs local cellular crosstalk between the fibrotic stroma and bipotent adult liver progenitor cells (LPCs), whose paracrine interactions promote epithelial repair and tissue remodeling. Using insulin-resistant mice deficient for insulin receptor substrate 2 (Irs2), we highlight dramatic impairment of proregenerative fibroblast growth factor 7 (Fgf7) signaling between stromal niche cells and LPCs during chronic injury. We provide a detailed account of the role played by IRS2 in promoting Fgf7 ligand and receptor (Fgfr2- IIIb) expression by the two cell compartments, and we describe an insulin/IRS2-dependent feed-forward loop capable of sustaining hepatic re-epithelialization by driving FGFR2-IIIb expression. Finally, we shed light on the regulation of IRS2 and FGF7 within the fibrotic stroma and show—using a human coculture system—that IRS2 silencing shifts the equilibrium away from paracrine epithelial repair in favor of fibrogenesis. Hence, we offer a compelling insight into the contribution of insulin resistance to the pathogenesis of chronic liver disease and propose IRS2 as a positive regulator of communication between cell types and the transition between phases of stromal to epithelial repair

    Assessment of sperm quality traits in relation to fertility in boar semen

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies have been published where sperm plasma membrane integrity correlated to fertility. In this study we describe a simple fluorometer-based assay where we monitored the fluorescence intensity of artificially membrane-ruptured spermatozoa with a fixed time staining with fluorescent DNA dyes.</p> <p>Methods</p> <p>Membrane-impermeant fluorescent dyes Hoechst 33258 (H258) and propidium iodide (PI) were used to measure the fluorescence of the nucleus in artificially membrane ruptured spermatozoa and membrane-permeant dye Hoechst 33342 (H342) was used to measure fluorescence of intact spermatozoa. The concentration of spermatozoa in insemination doses varied from 31.2 × 10<sup>6</sup>/ml to 50 × 10<sup>6</sup>/ml and the average value was 35 × 10<sup>6</sup>/ml. Each boar was represented by three consecutive ejaculates, collected at weekly intervals. Nonreturn rate within 60 days of first insemination (NR %) and litter size (total number of piglets born) of multiparous farrowings were used as fertility measures.</p> <p>Results</p> <p>Sperm fluorescence intensity of H258 and H342, but not the fluorescence intensity of PI-stained spermatozoa correlated significantly with the litter size of multiparous farrowings, values being r = - 0.68 (P < 0.01) for H258, r = - 0.69 (P < 0.01) for H342 and r = - 0.38, (P = 0.11) for PI.</p> <p>Conclusions</p> <p>The increase in fluorescence values of membrane-ruptured H258 and unruptured H342-stained spermatozoa in boar AI doses can be associated with smaller litter size after AI. This finding indicates that the fluorescence properties of the sperm nucleus could be used to select for AI doses with greater fertilizing potential.</p

    Management of anterior cruciate ligament rupture in patients aged 40 years and older

    Get PDF
    The aim of anterior cruciate ligament (ACL) reconstruction is essentially to restore functional stability of the knee and to allow patients to return to their desired work and activities. While in the young and active population, surgery is often the best therapeutic option after an ACL tear, ACL reconstruction in middle-aged people is rather more controversial due to concerns about a higher complication rate. The purpose of our article is to establish, through a systematic review of the literature, useful decision-making criteria for the management of anterior cruciate ligament rupture in patients aged 40 years and older, guiding surgeons to the most appropriate therapeutic approach. Various reports have shown excellent results of ACL reconstruction in patients over the age of 40 in terms of subjective satisfaction, return to previous activity level, and reduced complication and failure rates. Some even document excellent outcomes in subjects of 50 years and older. Although there are limited high-level studies, data reported in the literature suggest that ACL reconstruction can be successful in appropriately selected, motivated older patients with symptomatic knee instability who want to return to participating in highly demanding sport and recreational activities. Deciding factors are based on occupation, sex, activity level of the subject, amount of time spent performing such highly demanding activities, and presence of associated knee lesions. Physiological age and activity level are more important than chronological age as deciding factors when considering ACL reconstruction

    JNK3 Maintains Expression of the Insulin Receptor Substrate 2 (IRS2) in Insulin-Secreting Cells: Functional Consequences for Insulin Signaling

    Get PDF
    We have recently shown that silencing of the brain/islet specific c-Jun N-terminal Kinase3 (JNK3) isoform enhances both basal and cytokine-induced beta-cell apoptosis, whereas silencing of JNK1 or JNK2 has opposite effects. While it is known that JNK1 or JNK2 may promote apoptosis by inhibiting the activity of the pro-survival Akt pathway, the effect of JNK3 on Akt has not been documented. This study aims to determine the involvement of individual JNKs and specifically JNK3 in the regulation of the Akt signaling pathway in insulin-secreting cells. JNK3 silencing strongly decreases Insulin Receptor Substrate 2 (IRS2) protein expression, and blocks Akt2 but not Akt1 activation by insulin, while the silencing of JNK1 or JNK2 activates both Akt1 and Akt2. Concomitantly, the silencing of JNK1 or JNK2, but not of JNK3, potently phosphorylates the glycogen synthase kinase3 (GSK3β). JNK3 silencing also decreases the activity of the transcription factor Forkhead BoxO3A (FoxO3A) that is known to control IRS2 expression, in addition to increasing c-Jun levels that are known to inhibit insulin gene expression. In conclusion, we propose that JNK1/2 on one hand and JNK3 on the other hand, have opposite effects on insulin-signaling in insulin-secreting cells; JNK3 protects beta-cells from apoptosis and dysfunction mainly through maintenance of a normal IRS2 to Akt2 signaling pathway. It seems that JNK3 mediates its effects mainly at the transcriptional level, while JNK1 or JNK2 appear to mediate their pro-apoptotic effect in the cytoplasm

    Linkages Over Time Between Adolescents' Relationships with Parents and Friends

    Get PDF
    This 5-wave longitudinal study examines linkages over time between adolescents’ perceptions of relationships with parents and friends with respect to support, negative interaction, and power. A total of 575 early adolescents (54.1% boys) and 337 middle adolescents (43.3% boys) participated. Path analyses mainly showed bidirectional associations between adolescents’ perceptions of parent–adolescent relationships and friendships with a predominantly stronger influence from parent–adolescent relationships to friendships than vice versa in early to middle adolescence and an equal mutual influence in middle to late adolescence. The findings support the theoretical ideas that perceptions of relationships with parents generalize to perceptions of relationships with friends and that relationship skills and principles of adolescent friendships generalize to relationships with parents. Furthermore, the results indicate that the influence of parents decreases, whereas the influence of friends increases, and that both social worlds become equally important and overlapping towards late adolescence

    Successful Weight Loss Surgery Improves Eating Control and Energy Metabolism: A Review of the Evidence

    Get PDF
    Eating behavior is determined by a balance of memories in terms of reward and punishment to satisfy the urge to consume food. Refilling empty energy stores and hedonistic motivation are rewarding aspects of eating. Overfeeding, associated adverse GI effects, and obesity implicate punishment. In the current review, evidence is given for the hypothesis that bariatric surgery affects control over eating behavior.Moreover, any caloric overload will reduce the feeling of satiety. Durable weight loss after bariatric surgery is probably the result of a new equilibrium between reward and punishment, together with a better signaling of satiation due to beneficial metabolic changes.We propose to introduce three main treatment goals for bariatric surgery: 1) acceptable weight loss, 2) improvement of eating control, and 3) metabolic benefit. To achieve this goal, loss of 50% to 70% of excess weight will be appropriate (i.e. 30% to 40% loss of initial weight), depending on the degree of obesity prior to operation

    TGF-ß Sma/Mab Signaling Mutations Uncouple Reproductive Aging from Somatic Aging

    Get PDF
    Female reproductive cessation is one of the earliest age-related declines humans experience, occurring in mid-adulthood. Similarly, Caenorhabditis elegans' reproductive span is short relative to its total life span, with reproduction ceasing about a third into its 15–20 day adulthood. All of the known mutations and treatments that extend C. elegans' reproductive period also regulate longevity, suggesting that reproductive span is normally linked to life span. C. elegans has two canonical TGF-ß signaling pathways. We recently found that the TGF-ß Dauer pathway regulates longevity through the Insulin/IGF-1 Signaling (IIS) pathway; here we show that this pathway has a moderate effect on reproductive span. By contrast, TGF-ß Sma/Mab signaling mutants exhibit a substantially extended reproductive period, more than doubling reproductive span in some cases. Sma/Mab mutations extend reproductive span disproportionately to life span and act independently of known regulators of somatic aging, such as Insulin/IGF-1 Signaling and Dietary Restriction. This is the first discovery of a pathway that regulates reproductive span independently of longevity and the first identification of the TGF-ß Sma/Mab pathway as a regulator of reproductive aging. Our results suggest that longevity and reproductive span regulation can be uncoupled, although they appear to normally be linked through regulatory pathways

    MISC-1/OGC Links Mitochondrial Metabolism, Apoptosis and Insulin Secretion

    Get PDF
    We identified MISC-1 (Mitochondrial Solute Carrier) as the C. elegans orthologue of mammalian OGC (2-oxoglutarate carrier). OGC was originally identified for its ability to transfer α-ketoglutarate across the inner mitochondrial membrane. However, we found that MISC-1 and OGC are not solely involved in metabolic control. Our data show that these orthologous proteins participate in phylogenetically conserved cellular processes, like control of mitochondrial morphology and induction of apoptosis. We show that MISC-1/OGC is required for proper mitochondrial fusion and fission events in both C. elegans and human cells. Transmission electron microscopy reveals that loss of MISC-1 results in a decreased number of mitochondrial cristae, which have a blebbed appearance. Furthermore, our pull-down experiments show that MISC-1 and OGC interact with the anti-apoptotic proteins CED-9 and Bcl-xL, respectively, and with the pro-apoptotic protein ANT. Knock-down of misc-1 in C. elegans and OGC in mouse cells induces apoptosis through the caspase cascade. Genetic analysis suggests that MISC-1 controls apoptosis through the physiological pathway mediated by the LIN-35/Rb-like protein. We provide genetic and molecular evidence that absence of MISC-1 increases insulin secretion and enhances germline stem cell proliferation in C. elegans. Our study suggests that the mitochondrial metabolic protein MISC-1/OGC integrates metabolic, apoptotic and insulin secretion functions. We propose a novel mechanism by which mitochondria integrate metabolic and cell survival signals. Our data suggest that MISC-1/OGC functions by sensing the metabolic status of mitochondria and directly activate the apoptotic program when required. Our results suggest that controlling MISC-1/OGC function allows regulation of mitochondrial morphology and cell survival decisions by the metabolic needs of the cell

    Biomechanical considerations in the pathogenesis of osteoarthritis of the knee

    Get PDF
    Osteoarthritis is the most common joint disease and a major cause of disability. The knee is the large joint most affected. While chronological age is the single most important risk factor of osteoarthritis, the pathogenesis of knee osteoarthritis in the young patient is predominantly related to an unfavorable biomechanical environment at the joint. This results in mechanical demand that exceeds the ability of a joint to repair and maintain itself, predisposing the articular cartilage to premature degeneration. This review examines the available basic science, preclinical and clinical evidence regarding several such unfavorable biomechanical conditions about the knee: malalignment, loss of meniscal tissue, cartilage defects and joint instability or laxity
    corecore