1,861 research outputs found

    Heterodyne detection of the 752.033-GHz H2O rotational absorption line

    Get PDF
    A tunable high resolution two stage heterodyne radiometer was developed for the purpose of investigating the intensity and lineshape of the 752.033 GHz rotational transition of water vapor. Single-sideband system noise temperatures of approximately 45,000 K were obtained using a sensitive GaAs Schottky diode as the first stage mixer. First local oscillator power was supplied by a CO2 laser pumped formic acid laser (761.61 GHz), generating an X-band IF signal with theoretical line center at 9.5744 GHz. Second local oscillator power was provided by means of a 3 GHz waveguide cavity filter with only 9 dB insertion loss. In absorption measurements of the H2O taken from a laboratory simulation of a high altitude rocket plume, the center frequency of the 752 GHz line was determined to within 1 MHz of the reported value. A rotational temperature 75 K, a linewidth 5 MHz and a Doppler shift 3 MHz were measured with the line-of-sight intersecting the simulated-plume axis at a distance downstream of 30 nozzle diameters. These absorption data were obtained against continuum background radiation sources at temperatures of 1175 and 300 K

    Nonlinear Competition Between Small and Large Hexagonal Patterns

    Full text link
    Recent experiments by Kudrolli, Pier and Gollub on surface waves, parametrically excited by two-frequency forcing, show a transition from a small hexagonal standing wave pattern to a triangular ``superlattice'' pattern. We show that generically the hexagons and the superlattice wave patterns bifurcate simultaneously from the flat surface state as the forcing amplitude is increased, and that the experimentally-observed transition can be described by considering a low-dimensional bifurcation problem. A number of predictions come out of this general analysis.Comment: 4 pages, RevTex, revised, to appear in Phys. Rev. Let

    Critical Casimir force in 4^4He films: confirmation of finite-size scaling

    Full text link
    We present new capacitance measurements of critical Casimir force-induced thinning of 4^4He films near the superfluid/normal transition, focused on the region below TλT_{\lambda} where the effect is the greatest. 4^4He films of 238, 285, and 340 \AA thickness are adsorbed on N-doped silicon substrates with roughness 8A˚\approx 8 {\AA}. The Casimir force scaling function ϑ\vartheta , deduced from the thinning of these three films, collapses onto a single universal curve, attaining a minimum ϑ=1.30±0.03\vartheta = -1.30 \pm 0.03 at x=td1/ν=9.7±0.8A˚1/νx=td^{1/\nu}=-9.7\pm 0.8 {\AA}^{1/\nu}. The collapse confirms the finite-size scaling origin of the dip in the film thickness. Separately, we also confirm the presence down to 2.13K2.13 K of the Goldstone/surface fluctuation force, which makes the superfluid film 2A˚\sim 2 {\AA} thinner than the normal film.Comment: 4 pages, 3 figures, submitted to PR

    Physiotherapy practice in the private sector: organizational characteristics and models.

    Get PDF
    BACKGROUND: Even if a large proportion of physiotherapists work in the private sector worldwide, very little is known of the organizations within which they practice. Such knowledge is important to help understand contexts of practice and how they influence the quality of services and patient outcomes. The purpose of this study was to: 1) describe characteristics of organizations where physiotherapists practice in the private sector, and 2) explore the existence of a taxonomy of organizational models. METHODS: This was a cross-sectional quantitative survey of 236 randomly-selected physiotherapists. Participants completed a purpose-designed questionnaire online or by telephone, covering organizational vision, resources, structures and practices. Organizational characteristics were analyzed descriptively, while organizational models were identified by multiple correspondence analyses. RESULTS: Most organizations were for-profit (93.2%), located in urban areas (91.5%), and within buildings containing multiple businesses/organizations (76.7%). The majority included multiple providers (89.8%) from diverse professions, mainly physiotherapy assistants (68.7%), massage therapists (67.3%) and osteopaths (50.2%). Four organizational models were identified: 1) solo practice, 2) middle-scale multiprovider, 3) large-scale multiprovider and 4) mixed. CONCLUSIONS: The results of this study provide a detailed description of the organizations where physiotherapists practice, and highlight the importance of human resources in differentiating organizational models. Further research examining the influences of these organizational characteristics and models on outcomes such as physiotherapists' professional practices and patient outcomes are needed

    Faraday rotation spectra of bismuth-substituted ferrite garnet films with in-plane magnetization

    Full text link
    Single crystalline films of bismuth-substituted ferrite garnets have been synthesized by the liquid phase epitaxy method where GGG substrates are dipped into the flux. The growth parameters are controlled to obtain films with in-plane magnetization and virtually no domain activity, which makes them excellently suited for magnetooptic imaging. The Faraday rotation spectra were measured across the visible range of wavelengths. To interprete the spectra we present a simple model based on the existence of two optical transitions of diamagnetic character, one tetrahedral and one octahedral. We find excellent agreement between the model and our experimental results for photon energies between 1.77 and 2.53 eV, corresponding to wavelengths between 700 and 490 nm. It is shown that the Faraday rotation changes significantly with the amount of substituted gallium and bismuth. Furthermore, the experimental results suggest that the magnetooptic response changes linearly with the bismuth substitution.Comment: 15 pages, 6 figures, published in Phys. Rev.

    Pulmonary artery interventions after Norwood procedure: Does type or position of shunt predict need for intervention?

    Get PDF
    ObjectivesPulmonary artery stenosis is a potential complication after Norwood palliation for hypoplastic left heart syndrome. It is unclear whether the shunt type or position in the Norwood procedure is associated with the risk of the development of pulmonary artery stenosis. We examined the risk of pulmonary artery stenosis and the need for pulmonary artery intervention in children undergoing the Norwood procedure with either the right ventricle to pulmonary artery conduit or modified Blalock-Taussig shunt.MethodsA retrospective review was performed of all patients who underwent the Norwood procedure from January 1, 2003, to September 1, 2011. The data from 100 patients were reviewed, including catheterization and echocardiographic data, right ventricle to pulmonary artery conduit (n = 67, right shunt position in 17 and left in 50), and right ventricle to pulmonary artery (n = 33). The primary outcome measure was the need for operative or catheter-based pulmonary artery intervention.ResultsNo patients in the right ventricle to pulmonary artery group required catheterization-based pulmonary artery interventions. Surgical pulmonary arterioplasty was performed frequently and equally in both the right ventricle to pulmonary artery and right ventricle to pulmonary artery groups at the bidirectional Glenn procedure. Catheter-based pulmonary arterioplasty was performed more frequently in the right ventricle to pulmonary artery conduit group, especially when the conduit was positioned to the right side of the neoaorta. These patients had a 12.73 increased odds of a pulmonary artery intervention compared with the left to right ventricle to pulmonary artery conduit (P = .04).ConclusionsConsistent with a previous multicenter randomized trial, patients who received a right ventricle to pulmonary artery conduit versus a right ventricle to pulmonary artery have a greater risk of requiring pulmonary artery interventions. Patients with right ventricle to pulmonary artery conduit placement to the right underwent a greater number of pulmonary artery interventions but demonstrated overall improved growth of the branch pulmonary arteries compared with the patients receiving a left-sided right ventricle to pulmonary artery conduit

    Integrated plasmonic circuitry on a vertical-cavity surface-emitting semiconductor laser platform

    Get PDF
    Integrated plasmonic sources and detectors are imperative in the practical development of plasmonic circuitry for bio- and chemical sensing, nanoscale optical information processing, as well as transducers for high-density optical data storage. Here we show that vertical-cavity surface-emitting lasers (VCSELs) can be employed as an on-chip, electrically pumped source or detector of plasmonic signals, when operated in forward or reverse bias, respectively. To this end, we experimentally demonstrate surface plasmon polariton excitation, waveguiding, frequency conversion and detection on a VCSEL-based plasmonic platform. The coupling efficiency of the VCSEL emission to waveguided surface plasmon polariton modes has been optimized using asymmetric plasmonic nanostructures. The plasmonic VCSEL platform validated here is a viable solution for practical realizations of plasmonic functionalities for various applications, such as those requiring sub-wavelength field confinement, refractive index sensitivity or optical near-field transduction with electrically driven sources, thus enabling the realization of on-chip optical communication and lab-on-a-chip devices

    Drosophila eiger Mutants Are Sensitive to Extracellular Pathogens

    Get PDF
    We showed previously that eiger, the Drosophila tumor necrosis factor homolog, contributes to the pathology induced by infection with Salmonella typhimurium. We were curious whether eiger is always detrimental in the context of infection or if it plays a role in fighting some types of microbes. We challenged wild-type and eiger mutant flies with a collection of facultative intracellular and extracellular pathogens, including a fungus and Gram-positive and Gram-negative bacteria. The response of eiger mutants divided these microbes into two groups: eiger mutants are immunocompromised with respect to extracellular pathogens but show no change or reduced sensitivity to facultative intracellular pathogens. Hence, eiger helps fight infections but also can cause pathology. We propose that eiger activates the cellular immune response of the fly to aid clearance of extracellular pathogens. Intracellular pathogens, which can already defeat professional phagocytes, are unaffected by eiger
    corecore