16,640 research outputs found
Diffusive spreading and mixing of fluid monolayers
The use of ultra-thin, i.e., monolayer films plays an important role for the
emerging field of nano-fluidics. Since the dynamics of such films is governed
by the interplay between substrate-fluid and fluid-fluid interactions, the
transport of matter in nanoscale devices may be eventually efficiently
controlled by substrate engineering. For such films, the dynamics is expected
to be captured by two-dimensional lattice-gas models with interacting
particles. Using a lattice gas model and the non-linear diffusion equation
derived from the microscopic dynamics in the continuum limit, we study two
problems of relevance in the context of nano-fluidics. The first one is the
case in which along the spreading direction of a monolayer a mesoscopic-sized
obstacle is present, with a particular focus on the relaxation of the fluid
density profile upon encountering and passing the obstacle. The second one is
the mixing of two monolayers of different particle species which spread side by
side following the merger of two chemical lanes, here defined as domains of
high affinity for fluid adsorption surrounded by domains of low affinity for
fluid adsorption.Comment: 12 pages, 3 figure
Active colloids at fluid interfaces
If an active Janus particle is trapped at the interface between a liquid and
a fluid, its self-propelled motion along the interface is affected by a net
torque on the particle due to the viscosity contrast between the two adjacent
fluid phases. For a simple model of an active, spherical Janus colloid we
analyze the conditions under which translation occurs along the interface and
we provide estimates of the corresponding persistence length. We show that
under certain conditions the persistence length of such a particle is
significantly larger than the corresponding one in the bulk liquid, which is in
line with the trends observed in recent experimental studies
Turbulence, Complexity, and Solar Flares
The issue of predicting solar flares is one of the most fundamental in
physics, addressing issues of plasma physics, high-energy physics, and
modelling of complex systems. It also poses societal consequences, with our
ever-increasing need for accurate space weather forecasts. Solar flares arise
naturally as a competition between an input (flux emergence and rearrangement)
in the photosphere and an output (electrical current build up and resistive
dissipation) in the corona. Although initially localised, this redistribution
affects neighbouring regions and an avalanche occurs resulting in large scale
eruptions of plasma, particles, and magnetic field. As flares are powered from
the stressed field rooted in the photosphere, a study of the photospheric
magnetic complexity can be used to both predict activity and understand the
physics of the magnetic field. The magnetic energy spectrum and multifractal
spectrum are highlighted as two possible approaches to this.Comment: 2 figure
A model for fluvial bedrock incision by impacting suspended and bed load sediment
A mechanistic model is derived for the rate of fluvial erosion into bedrock by abrasion from uniform size particles that impact the bed during transport in both bed and suspended load. The erosion rate is equated to the product of the impact rate, the mass loss per particle impact, and a bed coverage term. Unlike previous models that consider only bed load, the impact rate is not assumed to tend to zero as the shear velocity approaches the threshold for suspension. Instead, a given sediment supply is distributed between the bed and suspended load by using formulas for the bed load layer height, bed load velocity, logarithmic fluid velocity profile, and Rouse sediment concentration profile. It is proposed that the impact rate scales linearly with the product of the near-bed sediment concentration and the impact velocity and that particles impact the bed because of gravitational settling and advection by turbulent eddies. Results suggest, unlike models that consider only bed load, that the erosion rate increases with increasing transport stage (for a given relative sediment supply), even for transport stages that exceed the onset of suspension. In addition, erosion can occur if the supply of sediment exceeds the bed load transport capacity because a portion of the sediment load is transported in suspension. These results have implications for predicting erosion rates and channel morphology, especially in rivers with fine sediment, steep channel-bed slopes, and large flood events
Is the critical Shields stress for incipient sediment motion dependent on channel-bed slope?
Data from laboratory flumes and natural streams show that the critical Shields stress for initial sediment motion increases with channel slope, which indicates that particles of the same size are more stable on steeper slopes. This observation is contrary to standard models that predict reduced stability with increasing slope due to the added downstream gravitational force. Processes that might explain this discrepancy are explored using a simple force-balance model, including increased drag from channel walls and bed morphology, variable friction angles, grain emergence, flow aeration, and changes to the local flow velocity and turbulent fluctuations. Surprisingly, increased drag due to changes in bed morphology does not appear to be the cause of the slope dependency because both the magnitude and trend of the critical Shields stress are similar for flume experiments and natural streams, and significant variations in bed morphology in flumes is unlikely. Instead, grain emergence and changes in local flow velocity and turbulent fluctuations seem to be responsible for the slope dependency due to the coincident increase in the ratio of bed-roughness scale to flow depth (i.e., relative roughness). A model for the local velocity within the grain-roughness layer is proposed based on a 1-D eddy viscosity with wake mixing. In addition, the magnitude of near-bed turbulent fluctuations is shown to depend on the depth-averaged flow velocity and the relative roughness. Extension of the model to mixed grain sizes indicates that the coarser fraction becomes increasingly difficult to transport on steeper slopes
First-order layering and critical wetting transitions in non-additive hard sphere mixtures
Using fundamental-measure density functional theory we investigate entropic
wetting in an asymmetric binary mixture of hard spheres with positive
non-additivity. We consider a general planar hard wall, where preferential
adsorption is induced by a difference in closest approach of the different
species and the wall. Close to bulk fluid-fluid coexistence the phase rich in
the minority component adsorbs either through a series of first-order layering
transitions, where an increasing number of liquid layers adsorbs sequentially,
or via a critical wetting transition, where a thick film grows continuously.Comment: 4 pages, 4 figure
Weak lensing evidence for a filament between A222/A223
We present a weak lensing analysis and comparison to optical and X-ray maps
of the close pair of massive clusters A222/223. Indications for a filamentary
connection between the clusters are found and discussed.Comment: 6 pages, 1 figure. To appear in Proc. IAU Colloquium 195: Outskirts
of Galaxy Clusters - Intense Life in the Suburbs. Version with higher
resolution available at
http://www.astro.uni-bonn.de/~dietrich/torino_proc.ps.g
- β¦