3,928 research outputs found

    Test of the local form of higher-spin equations via AdS/CFT

    Full text link
    The local form of higher-spin equations found recently to the second order [1] is shown to properly reproduce the anticipated AdS/CFTAdS/CFT correlators for appropriate boundary conditions. It is argued that consistent AdS/CFTAdS/CFT holography for the parity-broken boundary models needs a nontrivial modification of the bosonic truncation of the original higher-spin theory with the doubled number of fields, as well as a nonlinear deformation of the boundary conditions in the higher orders.Comment: 18 pages, Typos and acknowledgement corrected. Misleading notation in Section 4.2 changed. References correcte

    Charges in nonlinear higher-spin theory

    Full text link
    Nonlinear higher-spin equations in four dimensions admit a closed two-form that defines a gauge-invariant global charge as an integral over a two-dimensional cycle. In this paper we argue that this charge gives rise to partitions depending on various lower- and higher-spin chemical potentials identified with modules of topological fields in the theory. The vacuum contribution to the partition is calculated to the first nontrivial order for a solution to higher-spin equations that generalizes AdS4 Kerr black hole of General Relativity. The resulting partition is non-zero being in parametric agreement with the ADM-like behavior of a rotating source. The linear response of chemical potentials to the partition function is also extracted. The explicit unfolded form of 4d GR black holes is given. An explicit formula relating asymptotic higher-spin charges expressed in terms of the generalized higher-spin Weyl tensor with those expressed in terms of Fronsdal fields is obtained.Comment: 23 pages; V3: typos corrected; references and acknowledgement added; example of the topological contribution to spin-4 charge added; new Section 3.1 added establishing relation of our construction for asymptotic charges with the canonical one. Version published in JHE

    Lorentz covariant form of extended higher-spin equations

    Full text link
    The extension of nonlinear higher-spin equations in d=4 proposed in [arXiv:1504.07289] for the construction of invariant functional is shown to respect local Lorentz symmetry. The equations are rewritten in a manifestly Lorentz covariant form resulting from some Stueckelberg-like field transformation. We also show that the two field-independent central terms entering higher-spin equations which are not entirely fixed by the consistency alone get fixed unambiguously by the requirement of Lorentz symmetry. One of the important advantages of the proposed approach demonstrated in the paper is the remarkable simplification of the perturbative analysis.Comment: V2: 20 pages, typos corrected, references added. Version published in JHE

    Free Field Dynamics in the Generalized AdS (Super)Space

    Full text link
    Pure gauge representation for general vacuum background fields (Cartan forms) in the generalized AdSAdS superspace identified with OSp(L,M)OSp(L,M) is found. This allows us to formulate dynamics of free massless fields in the generalized AdSAdS space-time and to find their (generalized) conformal and higher spin field transformation laws. Generic solution of the field equations is also constructed explicitly. The results are obtained with the aid of the star product realization of ortosymplectic superalgebras.Comment: Some notes added, corrected typo

    BTZ Black Hole as Solution of 3d Higher Spin Gauge Theory

    Get PDF
    BTZ black hole is interpreted as exact solution of 3d higher spin gauge theory. Solutions for free massless fields in BTZ black hole background are constructed with the help of the star-product algebra formalism underlying the formulation of 3d higher spin theory. It is shown that a part of higher spin symmetries remains unbroken for special values of the BTZ parameters.Comment: 31 pages, LaTeX; references correcte
    corecore