6,723 research outputs found

    Use of Doppler Sodar in atmospheric measurements

    Get PDF
    O uso do Sodar Doppler tem trazido avanços significativos ao entendimento dos processos de camada limite atmosférica. Estes instrumentos têm demonstrado suas habilidades em um grande número de estudos, tais como circulações de brisa marítima/terrestre, escoamento em terrenos complexos, ondas de gravidade, jatos de baixos níveis e sistemas frontais, além de possibilitar estimativas quantitativas de parâmetros de turbulência tais como fluxo de calor sensível, balanço de energia cinética turbulenta, função estrutura de temperatura e a determinação da altura da camada de mistura.Neste trabalho, o princípio de funcionamento de diferentes tipos de Sodar, suas habilidades e limitações na instalação desses instrumentos são apresentados. No final, alguns fenômenos detectados por um Sodar Doppler do tipo “phased-array”, recentemente adquirido pelo IAG-USP, são apresentados

    Soil–Atmosphere Exchange of Nitrous Oxide, Nitric Oxide, Methane, and Carbon Dioxide in Logged and Undisturbed Forest in the Tapajos National Forest, Brazil

    Get PDF
    Selective logging is an extensive land use in the Brazilian Amazon region. The soil–atmosphere fluxes of nitrous oxide (N2O), nitric oxide (NO), methane (CH4), and carbon dioxide (CO2) are studied on two soil types (clay Oxisol and sandy loam Ultisol) over two years (2000–01) in both undisturbed forest and forest recently logged using reduced impact forest management in the Tapajos National Forest, near Santarem, Para, Brazil. In undisturbed forest, annual soil–atmosphere fluxes of N2O (mean ± standard error) were 7.9 ± 0.7 and 7.0 ± 0.6 ng N cm−2 h−1 for the Oxisol and 1.7 ± 0.1 and 1.6 ± 0.3 ng N cm−2 h−1 for the Ultisol for 2000 and 2001, respectively. The annual fluxes of NO from undisturbed forest soil in 2001 were 9.0 ± 2.8 ng N cm−2 h−1 for the Oxisol and 8.8 ± 5.0 ng N cm−2 h−1 for the Ultisol. Consumption of CH4 from the atmosphere dominated over production on undisturbed forest soils. Fluxes averaged −0.3 ± 0.2 and −0.1 ± 0.9 mg CH4 m−2 day−1 on the Oxisol and −1.0 ± 0.2 and −0.9 ± 0.3 mg CH4 m−2 day−1 on the Ultisol for years 2000 and 2001. For CO2 in 2001, the annual fluxes averaged 3.6 ± 0.4 μmol m−2 s−1 on the Oxisol and 4.9 ± 1.1 μmol m−2 s−1 on the Ultisol. We measured fluxes over one year each from two recently logged forests on the Oxisol in 2000 and on the Ultisol in 2001. Sampling in logged areas was stratified from greatest to least ground disturbance covering log decks, skid trails, tree-fall gaps, and forest matrix. Areas of strong soil compaction, especially the skid trails and logging decks, were prone to significantly greater emissions of N2O, NO, and especially CH4. In the case of CH4, estimated annual emissions from decks reached extremely high rates of 531 ± 419 and 98 ± 41 mg CH4 m−2 day−1, for Oxisol and Ultisol sites, respectively, comparable to wetland emissions in the region. We calculated excess fluxes from logged areas by subtraction of a background forest matrix or undisturbed forest flux and adjusted these fluxes for the proportional area of ground disturbance. Our calculations suggest that selective logging increases emissions of N2O and NO from 30% to 350% depending upon conditions. While undisturbed forest was a CH4 sink, logged forest tended to emit methane at moderate rates. Soil–atmosphere CO2 fluxes were only slightly affected by logging. The regional effects of logging cannot be simply extrapolated based upon one site. We studied sites where reduced impact harvest management was used while in typical conventional logging ground damage is twice as great. Even so, our results indicate that for N2O, NO, and CH4, logging disturbance may be as important for regional budgets of these gases as other extensive land-use changes in the Amazon such as the conversion of forest to cattle pasture

    Huge metastability in high-T_c superconductors induced by parallel magnetic field

    Full text link
    We present a study of the temperature-magnetic field phase diagram of homogeneous and inhomogeneous superconductivity in the case of a quasi-two-dimensional superconductor with an extended saddle point in the energy dispersion under a parallel magnetic field. At low temperature, a huge metastability region appears, limited above by a steep superheating critical field (H_sh) and below by a strongly reentrant supercooling field (H_sc). We show that the Pauli limit (H_p) for the upper critical magnetic field is strongly enhanced due to the presence of the Van Hove singularity in the density of states. The formation of a non-uniform superconducting state is predicted to be very unlikely.Comment: 5 pages, 2 figures; to appear in Phys. Rev.

    Experimentally induced root mortality increased nitrous oxide emission from tropical forest soils

    Get PDF
    We conducted an experiment on sand and clay tropical forest soils to test the short‐term effect of root mortality on the soil‐atmosphere flux of nitrous oxide, nitric oxide, methane, and carbon dioxide. We induced root mortality by isolating blocks of land to 1 m using trenching and root exclusion screening. Gas fluxes were measured weekly for ten weeks following the trenching treatment. For nitrous oxide there was a highly significant increase in soil‐atmosphere flux over the ten weeks following treatment for trenched plots compared to control plots. N2O flux averaged 37.5 and 18.5 ng N cm−2 h−1 from clay trenched and control plots and 4.7 and 1.5 ng N cm−2 h−1 from sand trenched and control plots. In contrast, there was no effect for soil‐atmosphere flux of nitric oxide, carbon dioxide, or methane

    Fine root dynamics and trace gas fluxes in two lowland tropical forest soils

    Get PDF
    Fine root dynamics have the potential to contribute significantly to ecosystem-scale biogeochemical cycling, including the production and emission of greenhouse gases. This is particularly true in tropical forests which are often characterized as having large fine root biomass and rapid rates of root production and decomposition. We examined patterns in fine root dynamics on two soil types in a lowland moist Amazonian forest, and determined the effect of root decay on rates of C and N trace gas fluxes. Root production averaged 229 ( 35) and 153 ( 27) gm 2 yr 1 for years 1 and 2 of the study, respectively, and did not vary significantly with soil texture. Root decay was sensitive to soil texture with faster rates in the clay soil (k5 0.96 year 1) than in the sandy loam soil (k5 0.61 year 1),leading to greater standing stocks of dead roots in the sandy loam. Rates of nitrous oxide (N2O) emissions were significantly greater in the clay soil (13 1ngNcm 2 h 1) than in the sandy loam (1.4 0.2 ngNcm 2 h 1). Root mortality and decay following trenching doubled rates of N2O emissions in the clay and tripled them in sandy loam over a 1-year period. Trenching also increased nitric oxide fluxes, which were greater in the sandy loam than in the clay. We used trenching (clay only) and a mass balance approach to estimate the root contribution to soil respiration. In clay soil root respiration was 264–380 gCm 2 yr 1, accounting for 24% to 35% of the total soil CO2 efflux. Estimates were similar using both approaches. In sandy loam, root respiration rates were slightly higher and more variable (521 206 gCm2 yr 1) and contributed 35% of the total soil respiration. Our results show that soil heterotrophs strongly dominate soil respiration in this forest, regardless of soil texture. Our results also suggest that fine root mortality and decomposition associated with disturbance and land-use change can contribute significantly to increased rates of nitrogen trace gas emissions

    Comparison of a thermopile broadband detector and a photon detector for the measurement of solar radiation

    Get PDF
    March 1976.Includes bibliographical references (page 45).Part I. Analysis of simutaneous data -- part II. Cosine response functions

    Variability of boundary layer processes for the metropolitan area of São Paulo during winter

    Get PDF
    As variações espaciais e temporais da Camada Limite planetária (CLP) da Área Metropolitana da cidade de São Paulo (RMSP) durante o período de 23 de julho a 15 de Agosto de 1999 são estudas utilizando dados de um Sodar Doppler. RMSP (λ = 23º34’ S e φ = 46º44’ W) está numa altitude de 800 m acima do nível médio do mar, localizada 60 km à noroeste do oceano Atlântico, limitada por cadeias de montanhas ao norte, tendo uma orografia complexa e configura-se numa ilha de calor urbana.Este trabalho tem o objetivo de entender o impacto da urbanização sobre os processos de CLP particularmente durante a estação de inverno. Um número de diferentes tipos de experimentos estiveram em operação durante uma campanha de inverno organizada pelo IAG-USP. O Sodar Doppler fornece dados sobre (i) função estrutura de temperatura, CT2, (ii) velocidade do vento horizontal, u, (iii) velocidade do vento vertical, w, (iv) desvios padrão do vento horizontal e vertical, σu, σv e σw, e (v) altura da inversão de temperatura, Zi.A análise dos dados fornecidos pelo Sodar mostra claramente as variações desses parâmetros em alturas indo de 50 m até 1500 m com intervalos de 50 m num intervalo de tempo de 15 minutos. Existe grande variação desses parâmetros com a altura.O aumento noturno no campo do vento horizontal com a altura é bem marcado indicando a quase ausência de transporte vertical de momento horizontal durante a noite em condições estáveis. Durante as horas da manhã a aceleração na velocidade do vento é evidente. O aumento anormal em Zi durante a noite sob condições estáveis prevalece durante o inverno com valores mais altos em agosto do que em julho

    Reconstructing fossil sub-structures of the Galactic disk: clues from abundance patterns of old open clusters and moving groups

    Full text link
    The long term goal of large-scale chemical tagging is to use stellar elemental abundances as a tracer of dispersed substructures of the Galactic disk. The identification of such lost stellar aggregates and the exploration of their chemical properties will be key in understanding the formation and evolution of the disk. Present day stellar structures such as open clusters and moving groups are the ideal testing grounds for the viability of chemical tagging, as they are believed to be the remnants of the original larger starforming aggregates. Until recently, high accuracy elemental abundance studies of open clusters and moving groups having been lacking in the literature. In this paper we examine recent high resolution abundance studies of open clusters to explore the various abundance trends and reasses the prospects of large-scale chemical tagging.Comment: Accepted for publication in the Publications of the Astronomical Society of Australi
    corecore