3,591 research outputs found

    Millimeter-Waves Structures on Benzocyclobutene Dielectric Substrate

    Get PDF
    The need of low-loss substrate materials with stable dielectric performances is a strong requirement when working at millimeter frequencies, where standard dielectrics exhibit prohibitive losses. In this paper, the authors focus their attention on a polymer material, the benzocyclobutene (BCB), having a low dielectric constant and a low loss tangent, with a stable behavior up to THz frequencies. A specific in-house manufacture technology is described to realize millimeter-wave structures on a BCB dielectric substrate. Experimental validations on BCB-based circuits and antennas prototypes are discussed

    Radar array diagnosis from undersampled data using a compressed sensing/sparse recovery technique

    Get PDF
    A Compressed Sensing/Sparse Recovery approach is adopted in this paper for the accurate diagnosis of fault array elements from undersampled data. Experimental validations on a slotted waveguide test array are discussed to demonstrate the effectiveness of the proposed procedure in the failures retrieval from a small set of measurements with respect to the number of radiating elements. Due to the sparsity feature of the proposed formulation, the method is particularly appealing for the diagnostics of large arrays, typically adopted for radar applications

    Beam position monitor

    Full text link
    This report addresses the accelerator physics technical note no. 11

    Tendinopathy: Pathophysiology, therapeutic options, and role of nutraceutics. a narrative literature review

    Get PDF
    Tendinopathies are very common in general population and a huge number of tendon-related procedures take place annually worldwide, with significant socio-economic repercussions. Numerous treatment options are commonly used for tendon disorders. Besides pharmacological and physical therapy, nutrition could represent an additional tool for preventing and treating this complex pathology that deserve a multidisciplinary approach. In recent years, nutraceutical products are growing up in popularity since these seem to favor the prevention and the healing processes of tendon injuries. This narrative literature review aims to summarize current understanding and the areas of ongoing research about the management of tendinopathies with the help of oral supplementation

    Dual-Band Dual-Linear Polarization Reflectarray for mmWaves/5G Applications

    Get PDF
    A dual-band dual-linear polarization reflectarray configuration is developed for future 5G cellular applications. A single layer unit cell including two pairs of miniaturized fractal patches is designed to operate at two distinct frequencies within the Ka-band (27/32 GHz), in a dual-polarization mode. An in-depth analysis of the unit cell behavior is carried out, to demonstrate the total independence between the designed frequency bands and polarizations. The proposed configuration offers a very simply and thin structure, small unit cell sizes, and low losses, while leading to an independent optimization of the phase at each frequency and polarization. A dual-band/dual-polarized reflectarray prototype is designed and tested, thus demonstrating the unit cell flexibility to offer arbitrary beam directions/shapes at each frequency, for both polarizations

    Optimization of RPCs read-out panel with electromagnetic simulation

    Full text link
    With the upgrade of the RPCs [1]-[2] and the increase of its performances, the study and the optimization of the read-out panel is necessary in order to maintain the signal integrity and to reduce the intrinsic crosstalk. Through Electromagnetic Simulation, performed with CST Studio Suite, new panels design are tested and their crosstalk property are studied. The behavior of different type of panel is shown, in particular a panel with the decoupling strip connected through their characteristic impedance to the ground plane is simulated
    corecore