9,885 research outputs found

    Correlation between the transition temperature and the superfluid density in BCS superconductor NbB_2+x

    Full text link
    The results of the muon-spin rotation experiments on BCS superconductors NbB_2+x (x = 0.2, 0.34) are reported. Both samples, studied in the present work, exhibit rather broad transitions to the superconducting state, suggesting a distribution of the volume fractions with different transition temperatures (T_c)'s. By taking these distributions into account, the dependence of the inverse squared zero-temperature magnetic penetration depth (\lambda_0^{-2}) on T_c was reconstructed for temperatures in the range 1.5K<T_c<8.0K. \lambda_0^{-2} was found to obey the power law dependence \lambda_0^{-2}\propto T_c^{3.1(1)} which appears to be common for some families of BCS superconductors as, {\it e.g.}, Al doped MgB_2 and high-temperature cuprate superconductors as underdoped YBa_2Cu_3O_{7-\delta}.Comment: 9 pages, 7 figures. Accepted for publication in Phys. Rev.

    On the nature of the magnetic ground-state wave function of V_2O_3

    Full text link
    After a brief historical introduction, we dwell on two recent experiments in the low-temperature, monoclinic phase of V_2O_3: K-edge resonant x-ray scattering and non-reciprocal linear dichroism, whose interpretations are in conflict, as they require incompatible magnetic space groups. Such a conflict is critically reviewed, in the light of the present literature, and new experimental tests are suggested, in order to determine unambiguously the magnetic group. We then focus on the correlated, non-local nature of the ground-state wave function, that is at the basis of some drawbacks of the LDA+U approach: we singled out the physical mechanism that makes LDA+U unreliable, and indicate the way out for a possible remedy. Finally we explain, by means of a symmetry argument related to the molecular wave function, why the magnetic moment lies in the glide plane, even in the absence of any local symmetry at vanadium sites.Comment: 7 pages, 1 figur

    Study of pressure effect on the magnetic penetration depth in MgB2_2

    Full text link
    A study of the pressure effect on the magnetic penetration depth λ\lambda in polycrystalline MgB2_{2} was performed by measuring the temperature dependence of the magnetization under an applied pressure of 0.15 and 1.13 GPa. We found that λ−2\lambda^{-2} at low temperature is only slightly affected by pressure [Δλ−2λ−2=1.5(9)\frac{\Delta \lambda^{-2}}{\lambda^{-2}} = 1.5(9)%], in contrast to cuprate superconductors, where, in the same range of pressure, a very large effect on λ−2\lambda^{-2} was found. Theoretical estimates indicate that most of the pressure effect on λ−2\lambda^{-2} in MgB2_2 arises from the electron-phonon interaction.Comment: 5 pages, 2 figure

    Muon-Spin-Rotation Measurements of the Penetration Depth in the Infinite-Layer Electron-Doped Cuprate Superconductor Sr0.9La0.1CuO2

    Full text link
    Muon spin rotation (mSR) measurements of the in-plane penetration depth lambda_ab have been performed in the electron-doped infinite layer high-Tc superconductor (HTS) Sr0.9La0.1CuO2. Absence of the magnetic rare-earth ions in this compound allowed to measure for the first time the absolute value of lambda_ab(0) in electron-doped HTS using mSR. We found lambda_ab(0)=116(2) nm. The zero-temperature depolarization rate sigma(0)?1/lambda_ab(0)^2=4.6(1) MHz is more than four times higher than expected from the Uemura line. Therefore this electron-doped HTS does not follow the Uemura relation found for hole-doped HTS.Comment: to be published in Physical Review Letter

    Selective vulnerability of neurons to acute toxicity after proteasome inhibitor treatment: Implications for oxidative stress and insolubility of newly synthesized proteins

    Get PDF
    Maintaining protein homeostasis is vital to cell viability, with numerous studies demonstrating a role for proteasome inhibition occurring during the aging of a variety of tissues and, presumably, contributing to the disruption of cellular homeostasis during aging. In this study we sought to elucidate the differences between neurons and astrocytes in regard to basal levels of protein synthesis, proteasome-mediated protein degradation, and sensitivity to cytotoxicity after proteasome inhibitor treatment. In these studies we demonstrate that neurons have an increased vulnerability, compared to astrocyte cultures, to proteasome-inhibitor-induced cytotoxicity. No significant difference was observed between these two cell types in regard to the basal rates of protein synthesis, or basal rates of protein degradation, in the pool of short-lived proteins. After proteasome inhibitor treatment neuronal crude lysates were observed to undergo greater increases in the levels of ubiquitinated and oxidized proteins and selectively exhibited increased levels of newly synthesized proteins accumulating within the insoluble protein pool, compared to astrocytes. Together, these data suggest a role for increased oxidized proteins and sequestration of newly synthesized proteins in the insoluble protein pool, as potential mediators of the selective neurotoxicity after proteasome inhibitor treatment. The implications for neurons exhibiting increased sensitivity to acute proteasome inhibitor exposure, and the corresponding changes in protein homeostasis observed after proteasome inhibition, are discussed in the context of both aging and age-related disorders of the nervous system.Fil: Dasuri, Kalavathi. State University of Louisiana; Estados UnidosFil: Ebenezer, Philip J.. State University of Louisiana; Estados UnidosFil: Zhang, Le. State University of Louisiana; Estados UnidosFil: Fernandez Kim, Sun Ok. State University of Louisiana; Estados UnidosFil: Uranga, Romina Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; ArgentinaFil: Gavilán, Elena. State University of Louisiana; Estados UnidosFil: Di Blasio, Alessia. State University of Louisiana; Estados UnidosFil: Keller, Jeffrey N.. State University of Louisiana; Estados Unido

    Tunable control of the bandwidth and frequency correlations of entangled photons

    Get PDF
    We demonstrate experimentally a new technique to control the bandwidth and the type of frequency correlations (correlation, anticorrelation, and even uncorrelation) of entangled photons generated by spontaneous parametric downconversion. The method is based on the control of the group velocities of the interacting waves. This technique can be applied in any nonlinear medium and frequency band of interest. It is also demonstrated that this technique helps enhance the quality of polarization entanglement even when femtosecond pulses are used as a pump.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let
    • …
    corecore