15,274 research outputs found
Ultra-compact Embedded Clusters in the Galactic Plane
We have identified a previously unrecognized population of very compact,
embedded low-mass Galactic stellar clusters. These tight (r0.14 pc)
groupings appear as bright singular objects at the few arcsec resolution of the
Spitzer Space Telescope at 8 and 24 m but become resolved in the
sub-arcsecond UKIDSS images. They average six stars per cluster surrounded by
diffuse infrared emission and coincide with 100 -- 300 M_{\sun} clumps of
molecular material within a larger molecular cloud. The magnitudes of the
brightest stars are consistent with mid- to early-B stars anchoring 80
M_{\sun} star clusters. Their evolutionary descendants are likely to be
Herbig Ae/Be pre-main sequence clusters. These ultra-compact embedded clusters
(UCECs) may fill part of the low-mass void in the embedded cluster mass
function. We provide an initial catalog of 18 UCECs drawn from infrared
Galactic Plane surveys.Comment: Accepted for publication in The Astrophysical Journals Letter
Assortative Mixing Equilibria in Social Network Games
It is known that individuals in social networks tend to exhibit homophily
(a.k.a. assortative mixing) in their social ties, which implies that they
prefer bonding with others of their own kind. But what are the reasons for this
phenomenon? Is it that such relations are more convenient and easier to
maintain? Or are there also some more tangible benefits to be gained from this
collective behaviour?
The current work takes a game-theoretic perspective on this phenomenon, and
studies the conditions under which different assortative mixing strategies lead
to equilibrium in an evolving social network. We focus on a biased preferential
attachment model where the strategy of each group (e.g., political or social
minority) determines the level of bias of its members toward other group
members and non-members. Our first result is that if the utility function that
the group attempts to maximize is the degree centrality of the group,
interpreted as the sum of degrees of the group members in the network, then the
only strategy achieving Nash equilibrium is a perfect homophily, which implies
that cooperation with other groups is harmful to this utility function. A
second, and perhaps more surprising, result is that if a reward for inter-group
cooperation is added to the utility function (e.g., externally enforced by an
authority as a regulation), then there are only two possible equilibria,
namely, perfect homophily or perfect heterophily, and it is possible to
characterize their feasibility spaces. Interestingly, these results hold
regardless of the minority-majority ratio in the population.
We believe that these results, as well as the game-theoretic perspective
presented herein, may contribute to a better understanding of the forces that
shape the groups and communities of our society
Berry phase effect in anomalous thermoelectric transport
We develop a theory of Berry phase effect in anomalous transport in
ferromagnets driven by statistical forces such as the gradient of temperature
or chemical potential. Here a charge Hall current arises from the Berry phase
correction to the orbital magnetization rather than from the anomalous velocity
which does not exist in the absence of a mechanical force. A finite-temperature
formula for the orbital magnetization is derived, which enables us to provide
an explicit expression for the off-diagonal thermoelectric conductivity, to
establish the Mott relation between the anomalous Nernst and Hall effects, and
to reaffirm the Onsager relations between reciprocal thermoelectric
conductivities. A first-principles evaluation of our expression is carried out
for the material CuCrSeBr, obtaining quantitative agreement
with a recent experiment.Comment: Published version in PR
Vacuum field energy and spontaneous emission in anomalously dispersive cavities
Anomalously dispersive cavities, particularly white light cavities, may have
larger bandwidth to finesse ratios than their normally dispersive counterparts.
Partly for this reason, their use has been proposed for use in LIGO-like
gravity wave detectors and in ring-laser gyroscopes. In this paper we analyze
the quantum noise associated with anomalously dispersive cavity modes. The
vacuum field energy associated with a particular cavity mode is proportional to
the cavity-averaged group velocity of that mode. For anomalously dispersive
cavities with group index values between 1 and 0, this means that the total
vacuum field energy associated with a particular cavity mode must exceed . For white light cavities in particular, the group index approaches
zero and the vacuum field energy of a particular spatial mode may be
significantly enhanced. We predict enhanced spontaneous emission rates into
anomalously dispersive cavity modes and broadened laser linewidths when the
linewidth of intracavity emitters is broader than the cavity linewidth.Comment: 9 pages, 4 figure
Nonlinear double Compton scattering in the full quantum regime
A detailed analysis of the process of two photon emission by an electron
scattered from a high-intensity laser pulse is presented. The calculations are
performed in the framework of strong-field QED and include exactly the presence
of the laser field, described as a plane wave. We investigate the full quantum
regime of interaction, where photon recoil plays an essential role in the
emission process, and substantially alters the emitted photon spectra as
compared to those in previously-studied regimes. We provide a semiclassical
explanation for such differences, based on the possibility of assigning a
trajectory to the electron in the laser field before and after each quantum
photon emission. Our numerical results indicate the feasibility of
investigating experimentally the full quantum regime of nonlinear double
Compton scattering with already available plasma-based electron accelerator and
laser technology.Comment: 5 pages, 3 figure
Hidden Ferronematic Order in Underdoped Cuprates
We study a model for low doped cuprates where holes aggregate into oriented
stripe segments which have a vortex and an antivortex fixed to the extremes. We
argue that due to the interaction between segments a state with macroscopic
polarization is stabilized, which we call a ferronematic. This state can be
characterized as a charge nematic which, due to the net polarization, breaks
inversion symmetry and also exhibits an incommensurate spin modulation. Our
calculation can reproduce the doping dependent spin structure factor of
lanthanum cuprates in excellent agreement with experiment and allows to
rationalize experiments in which the incommensurability has an order
parameter-like temperature dependence.Comment: 5 pages, 4 figure
Finite volume partition functions and Itzykson-Zuber integrals
We find the finite volume QCD partition function for arbitrary quark masses.
This is a generalization of a result obtained by Leutwyler and Smilga for equal
quark masses. Our result is derived in the sector of zero topological charge
using a generalization of the Itzykson-Zuber integral appropriate for arbitrary
complex matrices. We present a conjecture regarding the result for arbitrary
topological charge which reproduces the Leutwyler-Smilga result in the limit of
equal quark masses. We derive a formula of the Itzykson-Zuber type for
arbitrary {\em rectangular} complex matrices, extending the result of Guhr and
Wettig obtained for {\em square} matrices.Comment: 11 pages, LATEX. A minor typo in equation (12) has been corrected in
the revised versio
Rectangular Matrix Models and Combinatorics of Colored Graphs
We present applications of rectangular matrix models to various combinatorial
problems, among which the enumeration of face-bicolored graphs with prescribed
vertex degrees, and vertex-tricolored triangulations. We also mention possible
applications to Interaction-Round-a-Face and hard-particle statistical models
defined on random lattices.Comment: 42 pages, 11 figures, tex, harvmac, eps
Engaging Human-in-the-Loop for Autonomous Vehicle Simulation
Many autonomous vehicles are still in the development phase due to limited research and testing and will take a considerable amount of time to further develop before they are ready for public release. The main objective of this study is to introduce a human-in-the-loop simulation framework for supporting autonomous vehicle research. Our proposed simulation framework aims to facilitate AV assessment by providing a safer and more efficient way. Functionally, it is focused on the understanding of AVs’ operations in the presence of pedestrian users. The developed simulation framework allows a human pedestrian avatar to be integrated into the high-fidelity 3D virtual environment and interact with simulated autonomous vehicles via standard keyboard input methods or virtual reality (VR) methods. This enables safer pedestrian-AV integration research and testing, and the ability to implement a series of risky edge-case scenarios in less time and cost than would be feasible in a real-world setting
Strong signatures of radiation reaction below the radiation dominated regime
The influence of radiation reaction (RR) on multiphoton Thomson scattering by
an electron colliding head-on with a strong laser beam is investigated in a new
regime, in which the momentum transferred on average to the electron by the
laser pulse approximately compensates the one initially prepared. This
equilibrium is shown to be far more sensitive to the influence of RR than
previously studied scenarios. As a consequence RR can be experimentally
investigated with currently available laser systems and the underlying widely
discussed theoretical equations become testable for the first time.Comment: 4 pages, 3 figure
- …