25,559 research outputs found

    Characterization of Microlensing Planets with Moderately Wide Separations

    Full text link
    In future high-cadence microlensing surveys, planets can be detected through a new channel of an independent event produced by the planet itself. The two populations of planets to be detected through this channel are wide-separation planets and free-floating planets. Although they appear as similar short time-scale events, the two populations of planets are widely different in nature and thus distinguishing them is important. In this paper, we investigate the lensing properties of events produced by planets with moderately wide separations from host stars. We find that the lensing behavior of these events is well described by the Chang-Refsdal lensing and the shear caused by the primary not only produces a caustic but also makes the magnification contour elongated along the primary-planet axis. The elongated magnification contour implies that the light curves of these planetary events are generally asymmetric and thus the asymmetry can be used to distinguish the events from those produced by free-floating planets. The asymmetry can be noticed from the overall shape of the light curve and thus can hardly be missed unlike the very short-duration central perturbation caused by the caustic. In addition, the asymmetry occurs regardless of the event magnification and thus the bound nature of the planet can be identified for majority of these events. The close approximation of the lensing light curve to that of the Chang-Refsdal lensing implies that the analysis of the light curve yields only the information about the projected separation between the host star and the planet.Comment: 4 pages, 2 figure

    Global Agrifood Value Chains and Local Poverty Reduction: What Happens to Those Who Don’t Plug In?

    Get PDF
    Structural changes in the global agrifood value chain have transformed food production in developing countries including Indonesia. One element of this is the spread of supermarket retailing. By increasing the demand for and returns to higher quality produce, this development has the potential to improve living standards in a sector where poverty has been persistent. Many studies have shown the magnitude of price premiums available to farmers who sell to supermarkets. However, little attention has been paid to how the introduction of a supermarket retailer affects those farmers who continue to sell to traditional market channels. Our data suggests that in regions where there are both modern and traditional buyers, competition effects result in the immiserization of farmers who continue to sell to traditional markets. This result underlines the fact that while sectorial transformation has desirable poverty reduction potential, actual impacts are lumpy. The distribution of farmer participation in a region may result in a case where the upgrading of agrifood supply chains can increase poverty in the absence of policy interventions

    V2X Meets NOMA: Non-Orthogonal Multiple Access for 5G Enabled Vehicular Networks

    Full text link
    Benefited from the widely deployed infrastructure, the LTE network has recently been considered as a promising candidate to support the vehicle-to-everything (V2X) services. However, with a massive number of devices accessing the V2X network in the future, the conventional OFDM-based LTE network faces the congestion issues due to its low efficiency of orthogonal access, resulting in significant access delay and posing a great challenge especially to safety-critical applications. The non-orthogonal multiple access (NOMA) technique has been well recognized as an effective solution for the future 5G cellular networks to provide broadband communications and massive connectivity. In this article, we investigate the applicability of NOMA in supporting cellular V2X services to achieve low latency and high reliability. Starting with a basic V2X unicast system, a novel NOMA-based scheme is proposed to tackle the technical hurdles in designing high spectral efficient scheduling and resource allocation schemes in the ultra dense topology. We then extend it to a more general V2X broadcasting system. Other NOMA-based extended V2X applications and some open issues are also discussed.Comment: Accepted by IEEE Wireless Communications Magazin

    Estimating Marginal Hazard Ratios by Simultaneously Using A Set of Propensity Score Models: A Multiply Robust Approach

    Get PDF
    The inverse probability weighted Cox model is frequently used to estimate marginal hazard ratios. Its validity requires a crucial condition that the propensity score model is correctly specified. To provide protection against misspecification of the propensity score model, we propose a weighted estimation method rooted in empirical likelihood theory. The proposed estimator is multiply robust in that it is guaranteed to be consistent when a set of postulated propensity score models contains a correctly specified model. Our simulation studies demonstrate satisfactory finite sample performance of the proposed method in terms of consistency and efficiency. We apply the proposed method to compare the risk of postoperative hospitalization between sleeve gastrectomy and Roux-en-Y gastric bypass using data from a large medical claims and billing database.We further extend the development to multi-site studies to enable each site to postulate multiple site-specific propensity score models

    Short-duration lensing events: I. wide-orbit planets? free-floating low-mass objects? or high-velocity stars?

    Full text link
    Short duration lensing events tend to be generated by low-mass lenses or by lenses with high transverse velocities. Furthermore, for any given lens mass and speed, events of short duration are preferentially caused by nearby lenses (mesolenses) that can be studied in detail, or else by lenses so close to the source star that finite-source-size effects may be detected, yielding information about both the Einstein ring radius and the surface of the lensed star. Planets causing short-duration events may be in orbits with any orientation, and may have semimajor axes smaller than an AU, or they may reach the outer limits of their planetary systems, in the region corresponding to the Solar System's Oort Cloud. They can have masses larger than Jupiter's or smaller than Pluto's. Lensing therefore has a unique potential to expand our understanding of planetary systems. A particular advantage of lensing is that it can provide precision measurements of system parameters, including the masses of and projected separation between star and planet. We demonstrate how the parameters can be extracted and show that a great deal can be learned. For example, it is remarkable that the gravitational mass of nearby free-floating planet-mass lenses can be measured by complementing observations of a photometric event with deep images that detect the planet itself. A fraction of short events may be caused by high-velocity stars located within a kpc. Many high-velocity lenses are likely to be neutron stars that received large natal kicks. Other high-speed stars may be members of the halo population. Still others may be hypervelocity stars that have been ejected from the Galactic Center, or runaway stars escaped from close binaries, possibly including the progenitor binaries of Type Ia supernovae.Comment: 17 pages; 2 figures; submitted to ApJ 3 July 200

    Short-duration lensing events: II. Expectations and Protocols

    Full text link
    Ongoing microlensing observations by OGLE and MOA regularly identify and conduct high-cadence sampling of lensing events with Einstein diameter crossing time, tau_E, of 16 or fewer days. Events with estimated values of tau_E of one to two days have been detected. Short duration events tend to be generated by low-mass lenses or by lenses with high transverse velocities. We compute the expected rates, demonstrate the expected ranges of parameters for lenses of different mass, and develop a protocol for observing and modeling short-duration events. Relatively minor additions to the procedures presently used will increase the rate of planet discovery, and also discover or place limits on the population of high-speed dim stars and stellar remnants in the vicinity of the Sun.Comment: 17 pages; 3 figures; submitted to ApJ 3 July 200
    • …
    corecore