105 research outputs found

    Space-time symmetry restoration in cosmological models with Kalb--Ramond and scalar fields

    Full text link
    We study symmetry of space-time in presence of a minimally coupled scalar field interacting with a Kalb--Ramond tensor fields in a homogeneous but initially anisotropic universe. The analysis is performed for the two relevant cases of a pure cosmological constant and a minimal quadratic, renormalizable, interaction term. In both cases, due to expansion, a complete spatial symmetry restoration is dynamically obtained.Comment: Latex, 7 pages, 3 eps figure

    Black hole evaporation in a spherically symmetric non-commutative space-time

    Full text link
    Recent work in the literature has studied the quantum-mechanical decay of a Schwarzschild-like black hole, formed by gravitational collapse, into almost-flat space-time and weak radiation at a very late time. The relevant quantum amplitudes have been evaluated for bosonic and fermionic fields, showing that no information is lost in collapse to a black hole. On the other hand, recent developments in noncommutative geometry have shown that, in general relativity, the effects of non-commutativity can be taken into account by keeping the standard form of the Einstein tensor on the left-hand side of the field equations and introducing a modified energy-momentum tensor as a source on the right-hand side. Relying on the recently obtained non-commutativity effect on a static, spherically symmetric metric, we have considered from a new perspective the quantum amplitudes in black hole evaporation. The general relativity analysis of spin-2 amplitudes has been shown to be modified by a multiplicative factor F depending on a constant non-commutativity parameter and on the upper limit R of the radial coordinate. Limiting forms of F have been derived which are compatible with the adiabatic approximation.Comment: 8 pages, Latex file with IOP macros, prepared for the QFEXT07 Conference, Leipzig, September 200

    Non-commutative Kerr black hole

    Full text link
    This paper applies the first-order Seiberg-Witten map to evaluate the first-order non-commutative Kerr tetrad. The classical tetrad is taken to follow the locally non-rotating frame prescription. We also evaluate the tiny effect of non-commutativity on the efficiency of the Penrose process of rotational energy extraction from a black hole.Comment: 14 pages. The original calculations are completely ne

    Colonic metastasis from breast carcinoma detection by CESM and PET/CT: A case report

    Get PDF
    Introduction: Metastatic spread in invasive lobular carcinoma (ILC) of breast mainly occurs in bones, gynecological organs, peritoneum, retroperitoneum, and gastrointestinal (GI) tract. Metastases to the GI tract may arise many years after initial diagnosis and can affect the tract from the tongue to the anus, stomach being the most commonly involved site. Clinical presentations are predominantly nonspecific, and rarely asymptomatic. CEA, CA 15-3, and CA 19-9 may be informative for symptomatic patients who have had a previous history of breast cancer. Case presentation: We introduce the case of asymptomatic colonic metastasis from breast carcinoma in a 67-year-old woman followed-up for Luminal A ILC. Diagnosis was performed through positron emission tomography/computed tomography (PET/CT) scan and contrast-enhancement spectral mammography (CESM), steering endoscopist to spot the involved intestinal tract and in ruling out further dissemination in the breast parenchyma. Conclusion: In colonic metastases, tumor markers might not be totally reliable. In asymptomatic cases, clinical conditions might be underappreciated, missing local or distant recurrence. CT and PET/CT scan might be useful in diagnosing small volume diseases, and steering endoscopist toward GI metastasis originating from the breast. CESM represents a tolerable and feasible tool that rules out multicentricity and multifocality of breast localization. Moreover, particular patients could tolerate it better than magnetic resonance imaging (MRI)

    Dependence of the critical temperature on the Higgs field reparametrization

    Full text link
    We show that, despite of the reparametrization symmetry of the Lagrangian describing the interaction between a scalar field and gauge vector bosons, the dynamics of the Higgs mechanism is really affected by the representation gauge chosen for the Higgs field. Actually, we find that, varying the parametrization for the two degrees of freedom of the complex scalar field, we obtain different expressions for the Higgs mass: in its turn this entails different expressions for the critical temperatures, ranging from zero to a maximum value, as well as different expressions for other basic thermodynamical quantities.Comment: revtex, 12 pages, 2 eps figure

    Cosmological and Black Hole Spacetimes in Twisted Noncommutative Gravity

    Full text link
    We derive noncommutative Einstein equations for abelian twists and their solutions in consistently symmetry reduced sectors, corresponding to twisted FRW cosmology and Schwarzschild black holes. While some of these solutions must be rejected as models for physical spacetimes because they contradict observations, we find also solutions that can be made compatible with low energy phenomenology, while exhibiting strong noncommutativity at very short distances and early times.Comment: LaTeX 12 pages, JHEP.st

    Laboratory bounds on Lorentz symmetry violation in low energy neutrino physics

    Full text link
    Quantitative bounds on Lorentz symmetry violation in the neutrino sector have been obtained by analyzing existing laboratory data on neutron β\beta decay and pion leptonic decays. In particular some parameters appearing in the energy-momentum dispersion relations for νe\nu_e and νμ\nu_\mu have been constrained in two typical cases arising in many models accounting for Lorentz violation.Comment: revtex, 8 pages, no figures, references added, typos correcte

    Black hole evaporation within a momentum-dependent metric

    Full text link
    We investigate the black hole thermodynamics in a "deformed" relativity framework where the energy-momentum dispersion law is Lorentz-violating and the Schwarzchild-like metric is momentum-dependent with a Planckian cut-off. We obtain net deviations of the basic thermodynamical quantities from the Hawking-Bekenstein predictions: actually, the black hole evaporation is expected to quit at a nonzero critical mass value (of the order of the Planck mass), leaving a zero temperature remnant, and avoiding a spacetime singularity. Quite surprisingly, the present semiclassical corrections to black hole temperature, entropy, and heat capacity turn out to be identical to the ones obtained within some quantum approaches

    Gravitational amplitudes in black-hole evaporation: the effect of non-commutative geometry

    Full text link
    Recent work in the literature has studied the quantum-mechanical decay of a Schwarzschild-like black hole, formed by gravitational collapse, into almost-flat space-time and weak radiation at a very late time. The relevant quantum amplitudes have been evaluated for bosonic and fermionic fields, showing that no information is lost in collapse to a black hole. On the other hand, recent developments in noncommutative geometry have shown that, in general relativity, the effects of noncommutativity can be taken into account by keeping the standard form of the Einstein tensor on the left-hand side of the field equations and introducing a modified energy-momentum tensor as a source on the right-hand side. The present paper, relying on the recently obtained noncommutativity effect on a static, spherically symmetric metric, considers from a new perspective the quantum amplitudes in black hole evaporation. The general relativity analysis of spin-2 amplitudes is shown to be modified by a multiplicative factor F depending on a constant non-commutativity parameter and on the upper limit R of the radial coordinate. Limiting forms of F are derived which are compatible with the adiabatic approximation here exploited. Approximate formulae for the particle emission rate are also obtained within this framework.Comment: 14 pages, 2 figures, Latex macros. In the final version, section 5 has been amended, the presentation has been improved, and References 21-24 have been added. Last misprints amended in Section 5 and Ref. 2
    corecore