Recent work in the literature has studied the quantum-mechanical decay of a
Schwarzschild-like black hole, formed by gravitational collapse, into
almost-flat space-time and weak radiation at a very late time. The relevant
quantum amplitudes have been evaluated for bosonic and fermionic fields,
showing that no information is lost in collapse to a black hole. On the other
hand, recent developments in noncommutative geometry have shown that, in
general relativity, the effects of noncommutativity can be taken into account
by keeping the standard form of the Einstein tensor on the left-hand side of
the field equations and introducing a modified energy-momentum tensor as a
source on the right-hand side. The present paper, relying on the recently
obtained noncommutativity effect on a static, spherically symmetric metric,
considers from a new perspective the quantum amplitudes in black hole
evaporation. The general relativity analysis of spin-2 amplitudes is shown to
be modified by a multiplicative factor F depending on a constant
non-commutativity parameter and on the upper limit R of the radial coordinate.
Limiting forms of F are derived which are compatible with the adiabatic
approximation here exploited. Approximate formulae for the particle emission
rate are also obtained within this framework.Comment: 14 pages, 2 figures, Latex macros. In the final version, section 5
has been amended, the presentation has been improved, and References 21-24
have been added. Last misprints amended in Section 5 and Ref. 2