626 research outputs found

    Community Development and Social Participation

    Get PDF
    The paper presents the reslt of the action research project issued in Palermo (Southern Italy), in disadvantaged urban suburbs, methodologically based on Kurt Lewin's field theory - that is a three-step spiral process of planning which involves recoinnaissance; talking actions; and fact-finding about the results of the action - in order to develop the social participation and the social change. The principal aim of the project was the empowerment of participants, obtaining their collaboration through participation, giving them acquisition of knowledge for a real social change

    Community Participation in Urban Suburbs: The Italian Case of Z.E.N. Slum of Palermo

    Get PDF
    Based on Kurt Lewin’s Action Research theory, the paper focuses on an Action Research project issued in Southern Italy, in the disadvantaged suburb of Palermo (Sicily), called Z.E.N., sadly famous as a dangerous and “criminogenic” urban slum, in order to stimulate social participation and to develop social change. The principal goal was the empowerment of ordinary inhabitants, obtaining their collaboration through participation, giving them acquisition of knowledge for a real social change

    The KLASH Proposal

    Get PDF
    We propose a search of galactic axions with mass about 0.2 ”eV using a large volume resonant cavity, about 50 m3, cooled down to 4 K and immersed in a moderate axial magnetic field of about 0.6 T generated inside the superconducting magnet of the KLOE experiment [1] located at the National Laboratory of Frascati of INFN. This experiment, called KLASH (KLoe magnet for Axion SearcH) in the following, has a potential sensitivity on the axion-to-photon coupling, gaγγ, of about 6 × 10−17 GeV−1, reaching the region predicted by KSVZ [2] and DFSZ [3] models of QCD axions

    Silica nanoparticles induce NLRP3 inflammasome activation in human primary immune cells

    Get PDF
    RESUMEN: In recent years, the potential use of silica nanoparticles (SiNPs) among different biomedical fields has grown. A deep understanding of the physicochemical properties of nanoparticles (NPs) and their regulation of specific biological responses is crucial for the successful application of NPs. Exposure to NP physicochemical properties (size, shape, porosity, etc.) could result in deleterious effects on cellular functions, including a pro-inflammatory response mediated via activation of the NLRP3 inflammasome. The aim of this study was to evaluate the potential in vitro immunomodulatory effect of 12-nm and 200-nm SiNPs on the expression of pro-inflammatory cytokines and NLRP3 inflammasome components in human primary neutrophils and PBMCs. This study demonstrates that regardless of the size of the nanoparticles, SiNPs induce the production of pro-inflammatory cytokines in a dose-dependent manner. Induced IL-1ÎČ production after exposure to SiNPs suggests the involvement of NLRP3 inflammasome components participation in this process. In conclusion, SiNPs induce the production of pro-inflammatory cytokines in a dose-dependent manner. Furthermore, our data suggest that the production and release of IL-1ÎČ possibly occurs through the formation of the NLRP3 inflammasome

    Axion search with a quantum-limited ferromagnetic haloscope

    Full text link
    A ferromagnetic axion haloscope searches for Dark Matter in the form of axions by exploiting their interaction with electronic spins. It is composed of an axion-to-electromagnetic field transducer coupled to a sensitive rf detector. The former is a photon-magnon hybrid system, and the latter is based on a quantum-limited Josephson parametric amplifier. The hybrid system consists of ten 2.1 mm diameter YIG spheres coupled to a single microwave cavity mode by means of a static magnetic field. Our setup is the most sensitive rf spin-magnetometer ever realized. The minimum detectable field is 5.5×10−19 5.5\times10^{-19}\,T with 9 h integration time, corresponding to a limit on the axion-electron coupling constant gaee≀1.7×10−11g_{aee}\le1.7\times10^{-11} at 95% CL. The scientific run of our haloscope resulted in the best limit on DM-axions to electron coupling constant in a frequency span of about 120 MHz, corresponding to the axion mass range 42.442.4-43.1 Ό43.1\,\mueV. This is also the first apparatus to perform an axion mass scanning by changing the static magnetic field.Comment: 4 pages, 4 figure

    Searching for galactic axions through magnetized media: QUAX status report

    Full text link
    The current status of the QUAX R\&D program is presented. QUAX is a feasibility study for a detection of axion as dark matter based on the coupling to the electrons. The relevant signal is a magnetization change of a magnetic material placed inside a resonant microwave cavity and polarized with a static magnetic field.Comment: Contributed to the 13th Patras Workshop on Axions, WIMPs and WISPs, Thessaloniki, May 15 to 19, 201

    The cryogenic magneto-optical device for terahertz radiation detection

    Get PDF
    We present here a small-scale liquid Helium (LHe) immersion cryostat with an innovative optical setup suitable to work in long wavelength radiation ranges and under applied magnetic field. The cryostat is a multi stage device with several shielding in addition to several optical stages. The system has been designed with an external liquid Nitrogen boiler to reduce the liquid bubbling. The optical and mechanical properties of the optical elements were calculated and optimized for the designed configuration while the optical layout has been simulated and optimized among different configurations based on the geometry of the device. The final design has been optimized for low noise radiation measurements of proximity junction arrays under applied magnetic field in the wavelength range λ=250-2500 ”m

    A cryogenic magneto-optical device for long wavelength radiation

    Get PDF
    We present here a small-scale liquid helium immersion cryostat with an innovative optical setup suitable to work in long wavelength radiation ranges and under an applied magnetic field. The cryostat is a multi-stage device with several shielding in addition to several optical stages. The system has been designed with an external liquid nitrogen boiler to reduce liquid bubbling. The optical and mechanical properties of the optical elements were calculated and optimized for the designed configuration, while the optical layout has been simulated and optimized among different configurations based on the geometry of the device. The final design has been optimized for low-noise radiation measurements of proximity junction arrays under an applied magnetic field in the wavelength range λ = 250 Όm-2500 Όm
    • 

    corecore