7 research outputs found
Systematic and Evolutionary Insights Derived from mtDNA COI Barcode Diversity in the Decapoda (Crustacea: Malacostraca)
Background: Decapods are the most recognizable of all crustaceans and comprise a dominant group of benthic invertebrates of the continental shelf and slope, including many species of economic importance. Of the 17635 morphologically described Decapoda species, only 5.4% are represented by COI barcode region sequences. It therefore remains a challenge to compile regional databases that identify and analyse the extent and patterns of decapod diversity throughout the world. Methodology/Principal Findings: We contributed 101 decapod species from the North East Atlantic, the Gulf of Cadiz and the Mediterranean Sea, of which 81 species represent novel COI records. Within the newly-generated dataset, 3.6% of the species barcodes conflicted with the assigned morphological taxonomic identification, highlighting both the apparent taxonomic ambiguity among certain groups, and the need for an accelerated and independent taxonomic approach. Using the combined COI barcode projects from the Barcode of Life Database, we provide the most comprehensive COI data set so far examined for the Order (1572 sequences of 528 species, 213 genera, and 67 families). Patterns within families show a general predicted molecular hierarchy, but the scale of divergence at each taxonomic level appears to vary extensively between families. The range values of mean K2P distance observed were: within species 0.285% to 1.375%, within genus 6.376% to 20.924% and within family 11.392% to 25.617%. Nucleotide composition varied greatly across decapods, ranging from 30.8 % to 49.4 % GC content. Conclusions/Significance: Decapod biological diversity was quantified by identifying putative cryptic species allowing a rapid assessment of taxon diversity in groups that have until now received limited morphological and systematic examination. We highlight taxonomic groups or species with unusual nucleotide composition or evolutionary rates. Such data are relevant to strategies for conservation of existing decapod biodiversity, as well as elucidating the mechanisms and constraints shaping the patterns observed.FCT - SFRH/BD/25568/ 2006EC FP6 - GOCE-CT-2005-511234 HERMESFCT - PTDC/MAR/69892/2006 LusomarBo
Analysis of morphological variation of four populations of <i>Macrobrachium rosenbergii</i> (de man, 1879) (Crustacea: Decapoda) in Sri Lanka
The systematics of freshwater crayfish of the genus Cherax Erichson (Decapoda: Parastacidae) in eastern Australia re-examined using nucleotide sequences from 12S rRNA and 16S rRNA genes
Nucleotide sequence data were used to re-examine systematic relationships and species boundaries within the genus Cherax from eastern Australia. Partial sequences were amplified from the 12S (~365 bp) and 16S (~545 bp) rRNA mitochondrial gene regions. Levels of intra- and inter-specific divergence for Cherax species were very similar between the two gene regions and similar to that reported for other freshwater crayfish for 16S rRNA. Phylogenetic analyses using the combined data provided strong support for a monophyletic group containing 11 eastern Australian species and comprising three well-defined species-groups: the 'C. destructor' group containing three species, the 'C. cairnsensis' group containing four species and the 'C. cuspidatus' group containing two species. Cherax dispar and C. robustus are distinct from all other species and each other. In addition, two northern Australian and a New Guinean species were placed in the 'Astaconephrops' group, which is the sister-group to the eastern Australian Cherax lineage. Several relationships were clarified, including: the status of northern and southern C. cuspidatus as separate species; a close relationship between C. cairnsensis and C. depressus; the validity of C. rotundus and C. setosus as separate species and their close affinities with C. destructor; and the distinctiveness of the northern forms of Cherax. The analysis of the 12S rRNA and 16S rRNA data is highly concordant with the results of previous allozyme studie
Molecular phylogeny and zoogeography of the freshwater crayfish genus Cherax Erichson (Decapoda: Parastacidae) in Australia
The evolutionary history and biogeography of freshwater-dependent taxa in Australia is of intrinsic interest given the present-day aridity of this continent. Cherax is the most widespread and one of the most species-rich of Australia's nine freshwater crayfish genera. The phylogenetic relationships amongst 19 of the 23 Australian Cherax were established from mitochondrial DNA sequences representing the 12S rRNA and 16S rRNA gene regions. The relationships among species support an initial east–west separation, followed by a north–south divergence in eastern Australia. Molecular clock estimations suggest that these divergences date back to the Miocene. The phylogenetic relationships support endemic speciation within geographical regions and indicate that long-distance dispersal has not led to recent speciation as previously hypothesized. This new evolutionary scenario is consistent with the climatic history of Australia and the evolutionary history of other similarly distributed freshwater-dependent organisms in Australi
