9 research outputs found

    Gain through losses in nonlinear optics

    Get PDF
    Instabilities of uniform states are ubiquitous processes occurring in a variety of spatially extended nonlinear systems. These instabilities are at the heart of symmetry breaking, condensate dynamics, self-organization, pattern formation and noise amplification across diverse disciplines, including physics, chemistry, engineering and biology. In nonlinear optics, modulation instabilities are generally linked to the so-called parametric amplification process, which occurs when certain phase-matching or quasi-phase-matching conditions are satisfied. In the present review article, we summarize the principle results on modulation instabilities and parametric amplification in nonlinear optics, with special emphasis on optical fibres. We then review state-of-the-art research about a peculiar class of modulation instabilities and signal amplification processes induced by dissipation in nonlinear optical systems. Losses applied to certain parts of the spectrum counterintuitively lead to the exponential growth of the damped mode themselves, causing gain through losses. We discuss the concept of imaging of losses into gain, showing how to map a given spectral loss profile into a gain spectrum. We demonstrate with concrete examples that dissipation-induced modulation instability, apart from being of fundamental theoretical interest, may pave the way towards the design of a new class of tuneable fibre-based optical amplifiers, optical parametric oscillators, frequency comb sources and pulsed lasers

    Ultrashort pulses for nonlinear optical techniques

    No full text

    Nonlinear Optics

    No full text

    Copper: Role of the 'Endogenous' and 'Exogenous' Metal on the Development and Control of Inflammatory Processes

    No full text
    corecore