5 research outputs found

    Mammary epithelial cell transformation: insights from cell culture and mouse models

    Get PDF
    Normal human mammary epithelial cells (HMECs) have a finite life span and do not undergo spontaneous immortalization in culture. Critical to oncogenic transformation is the ability of cells to overcome the senescence checkpoints that define their replicative life span and to multiply indefinitely – a phenomenon referred to as immortalization. HMECs can be immortalized by exposing them to chemicals or radiation, or by causing them to overexpress certain cellular genes or viral oncogenes. However, the most efficient and reproducible model of HMEC immortalization remains expression of high-risk human papillomavirus (HPV) oncogenes E6 and E7. Cell culture models have defined the role of tumor suppressor proteins (pRb and p53), inhibitors of cyclin-dependent kinases (p16(INK4a), p21, p27 and p57), p14(ARF), telomerase, and small G proteins Rap, Rho and Ras in immortalization and transformation of HMECs. These cell culture models have also provided evidence that multiple epithelial cell subtypes with distinct patterns of susceptibility to oncogenesis exist in the normal mammary tissue. Coupled with information from distinct molecular portraits of primary breast cancers, these findings suggest that various subtypes of mammary cells may be precursors of different subtypes of breast cancers. Full oncogenic transformation of HMECs in culture requires the expression of multiple gene products, such as SV40 large T and small t, hTERT (catalytic subunit of human telomerase), Raf, phosphatidylinositol 3-kinase, and Ral-GEFs (Ral guanine nucleotide exchange factors). However, when implanted into nude mice these transformed cells typically produce poorly differentiated carcinomas and not adenocarcinomas. On the other hand, transgenic mouse models using ErbB2/neu, Ras, Myc, SV40 T or polyomavirus T develop adenocarcinomas, raising the possibility that the parental normal cell subtype may determine the pathological type of breast tumors. Availability of three-dimensional and mammosphere models has led to the identification of putative stem cells, but more studies are needed to define their biologic role and potential as precursor cells for distinct breast cancers. The combined use of transformation strategies in cell culture and mouse models together with molecular definition of human breast cancer subtypes should help to elucidate the nature of breast cancer diversity and to develop individualized therapies

    Changes in grassland management and linear infrastructures associated to the decline of an endangered bird population

    Get PDF
    European grassland birds are experiencing major population declines, mainly due to changes in farmland management. We analyzed the role of habitat availability, grazing management and linear infrastructures (roads and power lines) in explaining spatial and temporal variation in the population density of little bustards (Tetrax tetrax) in Portugal, during a decade in which the species population size halved. We used data from 51 areas (totaling ca. 1,50,000 ha) that were sampled in two different periods (2003–2006 and 2016). In 2003–2006, when the species occurred at high densities, habitat availability was the only factor affecting spatial variation in bustard density. In the 2016 survey, variation in density was explained by habitat availability and livestock management, with reduced bird numbers in areas with higher proportions of cattle. Population declines across the study period were steeper in areas that initially held higher densities of bustards and in areas with a higher proportion of cattle in the total stocking rate. Areas with higher densities of power lines also registered greater density declines, probably due to avoidance behavior and to increased mortality. Overall, our results show little bustards are currently lacking high quality grassland habitat, whose persistence depends on extensive grazing regimes and low linear infrastructure densitiesinfo:eu-repo/semantics/publishedVersio
    corecore