8 research outputs found

    Subliminal Salience Search Illustrated: EEG Identity and Deception Detection on the Fringe of Awareness

    Get PDF
    We propose a novel deception detection system based on Rapid Serial Visual Presentation (RSVP). One motivation for the new method is to present stimuli on the fringe of awareness, such that it is more difficult for deceivers to confound the deception test using countermeasures. The proposed system is able to detect identity deception (by using the first names of participants) with a 100% hit rate (at an alpha level of 0.05). To achieve this, we extended the classic Event-Related Potential (ERP) techniques (such as peak-to-peak) by applying Randomisation, a form of Monte Carlo resampling, which we used to detect deception at an individual level. In order to make the deployment of the system simple and rapid, we utilised data from three electrodes only: Fz, Cz and Pz. We then combined data from the three electrodes using Fisher's method so that each participant was assigned a single p-value, which represents the combined probability that a specific participant was being deceptive. We also present subliminal salience search as a general method to determine what participants find salient by detecting breakthrough into conscious awareness using EEG

    Attention Increases the Temporal Precision of Conscious Perception: Verifying the [Neural- ST superscript 2]Model

    Get PDF
    What role does attention play in ensuring the temporal precision of visual perception? Behavioural studies have investigated feature selection and binding in time using fleeting sequences of stimuli in the Rapid Serial Visual Presentation (RSVP) paradigm, and found that temporal accuracy is reduced when attentional control is diminished. To reduce the efficacy of attentional deployment, these studies have employed the Attentional Blink (AB) phenomenon. In this article, we use electroencephalography (EEG) to directly investigate the temporal dynamics of conscious perception. Specifically, employing a combination of experimental analysis and neural network modelling, we test the hypothesis that the availability of attention reduces temporal jitter in the latency between a target's visual onset and its consolidation into working memory. We perform time-frequency analysis on data from an AB study to compare the EEG trials underlying the P3 ERPs (Event-related Potential) evoked by targets seen outside vs. inside the AB time window. We find visual differences in phase-sorted ERPimages and statistical differences in the variance of the P3 phase distributions. These results argue for increased variation in the latency of conscious perception during the AB. This experimental analysis is complemented by a theoretical exploration of temporal attention and target processing. Using activation traces from the Neural-ST2 [Neural - ST superscript 2] model, we generate virtual ERPs and virtual ERPimages. These are compared to their human counterparts to propose an explanation of how target consolidation in the context of the AB influences the temporal variability of selective attention. The AB provides us with a suitable phenomenon with which to investigate the interplay between attention and perception. The combination of experimental and theoretical elucidation in this article contributes to converging evidence for the notion that the AB reflects a reduction in the temporal acuity of selective attention and the timeliness of perception.Engineering and Physical Sciences Research Council (Grant GR/S15075/01)Research Councils UK (Academic Fellowship grant EP/C509218/1)National Institute of Mental Health (U.S.) (Grant NIMH MH47432

    Literatur

    No full text
    corecore