139 research outputs found
TGF-beta 1 induces human alveolar epithelial to mesenchymal cell transition (EMT)
Background: Fibroblastic foci are characteristic features in lung parenchyma of patients with idiopathic pulmonary fibrosis (IPF). They comprise aggregates of mesenchymal cells which underlie sites of unresolved epithelial injury and are associated with progression of fibrosis. However, the cellular origins of these mesenchymal phenotypes remain unclear. We examined whether the potent fibrogenic cytokine TGF-β1 could induce epithelial mesenchymal transition (EMT) in the human alveolar epithelial cell line, A549, and investigated the signaling pathway of TGF-β1-mediated EMT.
Methods: A549 cells were examined for evidence of EMT after treatment with TGF-β1. EMT was assessed by: morphology under phase-contrast microscopy; Western analysis of cell lysates for expression of mesenchymal phenotypic markers including fibronectin EDA (Fn-EDA), and expression of epithelial phenotypic markers including E-cadherin (E-cad). Markers of fibrogenesis, including collagens and connective tissue growth factor (CTGF) were also evaluated by measuring mRNA level using RT-PCR, and protein by immunofluorescence or Western blotting. Signaling pathways for EMT were characterized by Western analysis of cell lysates using monoclonal antibodies to detect phosphorylated Erk1/2 and Smad2 after TGF-β1 treatment in the presence or absence of MEK inhibitors. The role of Smad2 in TGF-β1-mediated EMT was investigated using siRNA.
Results: The data showed that TGF-β1, but not TNF-α or IL-1β, induced A549 cells with an alveolar epithelial type II cell phenotype to undergo EMT in a time-and concentration-dependent manner. The process of EMT was accompanied by morphological alteration and expression of the fibroblast phenotypic markers Fn-EDA and vimentin, concomitant with a downregulation of the epithelial phenotype marker E-cad. Furthermore, cells that had undergone EMT showed enhanced expression of markers of fibrogenesis including collagens type I and III and CTGF. MMP-2 expression was also evidenced. TGF-β1-induced EMT occurred through phosphorylation of Smad2 and was inhibited by Smad2 gene silencing; MEK inhibitors failed to attenuate either EMT-associated Smad2 phosphorylation or the observed phenotypic changes.
Conclusion: Our study shows that TGF-β1 induces A549 alveolar epithelial cells to undergo EMT via Smad2 activation. Our data support the concept of EMT in lung epithelial cells, and suggest the need for further studies to investigate the phenomenon
Recurrent rare copy number variants increase risk for esotropia
Purpose: To determine whether rare copy number variants (CNVs) increase risk for comitant esotropia. Methods: CNVs were identified in 1614 Caucasian individuals with comitant esotropia and 3922 Caucasian controls from Illumina SNP genotyping using two Hidden Markov model (HMM) algorithms, PennCNV and QuantiSNP, which call CNVs based on logR ratio and B allele frequency. Deletions and duplications greater than 10 kb were included. Common CNVs were excluded. Association testing was performed with 1 million permutations in PLINK. Significant CNVs were confirmed with digital droplet polymerase chain reaction (ddPCR). Whole genome sequencing was performed to determine insertion location and breakpoints. Results: Esotropia patients have similar rates and proportions of CNVs compared with controls but greater total length and average size of both deletions and duplications. Three recurrent rare duplications significantly (P = 1 × 10-6) increase the risk of esotropia: chromosome 2p11.2 (hg19, 2:87428677-87965359), spanning one long noncoding RNA (lncRNA) and two microRNAs (OR 14.16; 95% confidence interval [CI] 5.4-38.1); chromosome 4p15.2 (hg19, 4:25554332-25577184), spanning one lncRNA (OR 11.1; 95% CI 4.6-25.2); chromosome 10q11.22 (hg19, 10:47049547-47703870) spanning seven protein-coding genes, one lncRNA, and four pseudogenes (OR 8.96; 95% CI 5.4-14.9). Overall, 114 cases (7%) and only 28 controls (0.7%) had one of the three rare duplications. No case nor control had more than one of these three duplications. Conclusions: Rare CNVs are a source of genetic variation that contribute to the genetic risk for comitant esotropia, which is likely polygenic. Future research into the functional consequences of these recurrent duplications may shed light on the pathophysiology of esotropia
Initial characteristics of RbcX proteins from Arabidopsis thaliana
Form I of Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) is composed of eight large (RbcL) and eight small (RbcS) subunits. Assembly of these subunits into a functional holoenzyme requires the assistance of additional assembly factors. One such factor is RbcX, which has been demonstrated to act as a chaperone in the assembly of most cyanobacterial Rubisco complexes expressed in heterologous system established in Escherichia coli cells. Analysis of Arabidopsis thaliana genomic sequence revealed the presence of two genes encoding putative homologues of cyanobacterial RbcX protein: AtRbcX1 (At4G04330) and AtRbcX2 (At5G19855). In general, both RbcX homologues seem to have the same function which is chaperone activity during Rubisco biogenesis. However, detailed analysis revealed slight differences between them. AtRbcX2 is localized in the stromal fraction of chloroplasts whereas AtRbcX1 was found in the insoluble fraction corresponding with thylakoid membranes. Search for putative “partners” using mass spectrometry analysis suggested that apart from binding to RbcL, AtRbcX1 may also interact with β subunit of chloroplast ATP synthase. Quantitative RT-PCR analysis of AtRbcX1 and AtRbcX2 expression under various stress conditions indicated that AtRbcX2 is transcribed at a relatively stable level, while the transcription level of AtRbcX1 varies significantly. In addition, we present the attempts to elucidate the secondary structure of AtRbcX proteins using CD spectroscopy. Presented results are the first known approach to elucidate the role of RbcX proteins in Rubisco assembly in higher plants
Chronic non-specific low back pain - sub-groups or a single mechanism?
Copyright 2008 Wand and O'Connell; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Low back pain is a substantial health problem and has subsequently attracted a
considerable amount of research. Clinical trials evaluating the efficacy of a variety of interventions
for chronic non-specific low back pain indicate limited effectiveness for most commonly applied
interventions and approaches.
Discussion: Many clinicians challenge the results of clinical trials as they feel that this lack of
effectiveness is at odds with their clinical experience of managing patients with back pain. A
common explanation for this discrepancy is the perceived heterogeneity of patients with chronic
non-specific low back pain. It is felt that the effects of treatment may be diluted by the application
of a single intervention to a complex, heterogeneous group with diverse treatment needs. This
argument presupposes that current treatment is effective when applied to the correct patient.
An alternative perspective is that the clinical trials are correct and current treatments have limited
efficacy. Preoccupation with sub-grouping may stifle engagement with this view and it is important
that the sub-grouping paradigm is closely examined. This paper argues that there are numerous
problems with the sub-grouping approach and that it may not be an important reason for the
disappointing results of clinical trials. We propose instead that current treatment may be ineffective
because it has been misdirected. Recent evidence that demonstrates changes within the brain in
chronic low back pain sufferers raises the possibility that persistent back pain may be a problem of
cortical reorganisation and degeneration. This perspective offers interesting insights into the
chronic low back pain experience and suggests alternative models of intervention.
Summary: The disappointing results of clinical research are commonly explained by the failure of
researchers to adequately attend to sub-grouping of the chronic non-specific low back pain
population. Alternatively, current approaches may be ineffective and clinicians and researchers may
need to radically rethink the nature of the problem and how it should best be managed
Mangiferin Decreases Plasma Free Fatty Acids through Promoting Its Catabolism in Liver by Activation of AMPK
Mangiferin has been shown to have the effect of improving dyslipidemia. Plasma free fatty acids (FFA) are closely associated with blood lipid metabolism as well as many diseases including metabolic syndrome. This study is to investigate whether mangiferin has effects on FFA metabolism in hyperlipidemic rats. Wistar rats were fed a high-fat diet and administered mangiferin simultaneously for 6 weeks. Mangiferin (50, 100, 150 mg/kg BW) decreased dose-dependently FFA and triglycerides (TG) levels in plasma, and their accumulations in liver, but increased the β-hydroxybutyrate levels in both plasma and liver of hyperlipidemic rats. HepG2 cells were treated with oleic acid (OA, 0.2 mmol/L) to simulate the condition of high level of plasma FFA in vitro, and were treated with different concentrations of mangiferin simultaneously for 24 h. We found that mangiferin significantly increased FFA uptake, significantly decreased intracellular FFA and TG accumulations in HepG2 cells. Mangiferin significantly increased AMP-activated protein kinase (AMPK) phosphorylation and its downstream proteins involved in fatty acid translocase (CD36) and carnitine palmitoyltransferase 1 (CPT1), but significantly decreased acyl-CoA: diacylgycerol acyltransferase 2 (DGAT2) expression and acetyl-CoA carboxylase (ACC) activity by increasing its phosphorylation level in both in vivo and in vitro studies. Furthermore, these effects were reversed by Compound C, an AMPK inhibitor in HepG2 cells. For upstream of AMPK, mangiferin increased AMP/ATP ratio, but had no effect on LKB1 phosphorylation. In conclusion, mangiferin decreased plasma FFA levels through promoting FFA uptake and oxidation, inhibiting FFA and TG accumulations by regulating the key enzymes expression in liver through AMPK pathway. Therefore, mangiferin is a possible beneficial natural compound for metabolic syndrome by improving FFA metabolism
Glacial History of the North Atlantic Marine Snail, Littorina saxatilis, Inferred from Distribution of Mitochondrial DNA Lineages
The North Atlantic intertidal gastropod, Littorina saxatilis (Olivi, 1792), exhibits extreme morphological variation between and within geographic regions and has become a model for studies of local adaptation; yet a comprehensive analysis of the species' phylogeography is lacking. Here, we examine phylogeographic patterns of the species' populations in the North Atlantic and one remote Mediterranean population using sequence variation in a fragment of the mitochondrial cytochrome b gene (607 bp). We found that, as opposed to many other rocky intertidal species, L. saxatilis has likely had a long and continuous history in the Northwest Atlantic, including survival during the last glacial maximum (LGM), possibly in two refugia. In the Northeast Atlantic, several areas likely harboured refugial populations that recolonized different parts of this region after glacial retreat, resulting in strong population structure. However, the outlying monomorphic Venetian population is likely a recent anthropogenic introduction from northern Europe and not a remnant of an earlier wider distribution in the Mediterranean Sea. Overall, our detailed phylogeography of L. saxatilis adds an important piece to the understanding of Pleistocene history in North Atlantic marine biota as well as being the first study to describe the species' evolutionary history in its natural range. The latter contribution is noteworthy because the snail has recently become an important model species for understanding evolutionary processes of speciation; thus our work provides integral information for such endeavours
The state of pediatric asthma in Chicago's Humboldt Park: a community-based study in two local elementary schools
Abstract
Background
Pediatric asthma is a serious public health problem in Chicago and has been designated a high priority concern by residents of Chicago's Humboldt Park, a diverse community area with a large number of Puerto Rican, African American, and Mexican American families.
Methods
In May 2009, following the principles of community-based participatory research, a cross-sectional asthma screening survey was administered to adult caregivers of children attending two Humboldt Park elementary schools. Data were analyzed to determine the prevalence of diagnosed and probable asthma as well as the degree of asthma control among affected children; associations between asthma outcomes and mutable triggers were evaluated.
Results
Surveys from 494 children were evaluated. Physician-diagnosed asthma was reported for 24.9% of children and probable asthma identified in an additional 16.2% of children. Asthma was poorly or moderately controlled in 60.0% of diagnosed children. Smoking occurred inside 25.0% of households and 75.0% of caregivers reported idling of vehicles in their community. Report of general stress among caregivers, stress due to community crime, and/or an inability to cope with everyday life were significantly and positively associated with poor asthma morbidity and control among affected children.
Conclusions
Despite high prevalence rates and poor asthma morbidity and control in Humboldt Park, the association of these measures with mutable variables is promising. A community-based asthma intervention to address the issues identified in this study is needed to affect positive change.http://deepblue.lib.umich.edu/bitstream/2027.42/112574/1/12887_2010_Article_357.pd
Establishment Failure in Biological Invasions: A Case History of Littorina littorea in California, USA
The early stages of biological invasions are rarely observed, but can provide significant insight into the invasion process as well as the influence vectors have on invasion success or failure.We characterized three newly discovered populations of an introduced gastropod, Littorina littorea (Linné, 1758), in California, USA, comparing them to potential source populations in native Europe and the North American East Coast, where the snail is also introduced. Demographic surveys were used to assess spatial distribution and sizes of the snail in San Francisco and Anaheim Bays, California. Mitochondrial DNA was sequenced and compared among these nascent populations, and various populations from the North American East Coast and Europe, to characterize the California populations and ascertain their likely source. Demographic and genetic data were considered together to deduce likely vectors for the California populations. We found that the three large California L. littorea populations contained only adult snails and had unexpectedly high genetic diversity rather than showing an extreme bottleneck as typically expected in recent introductions. Haplotype diversity in Californian populations was significantly reduced compared to European populations, but not compared to East Coast populations. Genetic analyses clearly suggested the East Coast as the source region for the California introductions.The California L. littorea populations were at an early, non-established phase of invasion with no evidence of recruitment. The live seafood trade is the most likely invasion vector for these populations, as it preferentially transports large numbers of adult L. littorea, matching the demographic structure of the introduced California L. littorea populations. Our results highlight continued operation of live seafood trade vectors and the influence of vectors on the demographic and genetic structure of the resulting populations, especially early stages of the invasion process
Calculation of the relative metastabilities of proteins using the CHNOSZ software package
<p>Abstract</p> <p>Background</p> <p>Proteins of various compositions are required by organisms inhabiting different environments. The energetic demands for protein formation are a function of the compositions of proteins as well as geochemical variables including temperature, pressure, oxygen fugacity and pH. The purpose of this study was to explore the dependence of metastable equilibrium states of protein systems on changes in the geochemical variables.</p> <p>Results</p> <p>A software package called CHNOSZ implementing the revised Helgeson-Kirkham-Flowers (HKF) equations of state and group additivity for ionized unfolded aqueous proteins was developed. The program can be used to calculate standard molal Gibbs energies and other thermodynamic properties of reactions and to make chemical speciation and predominance diagrams that represent the metastable equilibrium distributions of proteins. The approach takes account of the chemical affinities of reactions in open systems characterized by the chemical potentials of basis species. The thermodynamic database included with the package permits application of the software to mineral and other inorganic systems as well as systems of proteins or other biomolecules.</p> <p>Conclusion</p> <p>Metastable equilibrium activity diagrams were generated for model cell-surface proteins from archaea and bacteria adapted to growth in environments that differ in temperature and chemical conditions. The predicted metastable equilibrium distributions of the proteins can be compared with the optimal growth temperatures of the organisms and with geochemical variables. The results suggest that a thermodynamic assessment of protein metastability may be useful for integrating bio- and geochemical observations.</p
- …