15 research outputs found

    SUMO Pathway Dependent Recruitment of Cellular Repressors to Herpes Simplex Virus Type 1 Genomes

    Get PDF
    Components of promyelocytic leukaemia (PML) nuclear bodies (ND10) are recruited to sites associated with herpes simplex virus type 1 (HSV-1) genomes soon after they enter the nucleus. This cellular response is linked to intrinsic antiviral resistance and is counteracted by viral regulatory protein ICP0. We report that the SUMO interaction motifs of PML, Sp100 and hDaxx are required for recruitment of these repressive proteins to HSV-1 induced foci, which also contain SUMO conjugates and PIAS2β, a SUMO E3 ligase. SUMO modification of PML and elements of its tripartite motif (TRIM) are also required for recruitment in cells lacking endogenous PML. Mutants of PML isoform I and hDaxx that are not recruited to virus induced foci are unable to reproduce the repression of ICP0 null mutant HSV-1 infection mediated by their wild type counterparts. We conclude that recruitment of ND10 components to sites associated with HSV-1 genomes reflects a cellular defence against invading pathogen DNA that is regulated through the SUMO modification pathway

    Functional Interaction of Nuclear Domain 10 and Its Components with Cytomegalovirus after Infections: Cross-Species Host Cells versus Native Cells

    Get PDF
    Species-specificity is one of the major characteristics of cytomegaloviruses (CMVs) and is the primary reason for the lack of a mouse model for the direct infection of human CMV (HCMV). It has been determined that CMV cross-species infections are blocked at the post-entry level by intrinsic cellular defense mechanisms, but few details are known. It is important to explore how CMVs interact with the subnuclear structure of the cross-species host cell. In our present study, we discovered that nuclear domain 10 (ND10) of human cells was not disrupted by murine CMV (MCMV) and that the ND10 of mouse cells was not disrupted by HCMV, although the ND10-disrupting protein, immediate-early protein 1 (IE1), also colocalized with ND10 in cross-species infections. In addition, we found that the UL131-repaired HCMV strain AD169 (vDW215-BADrUL131) can infect mouse cells to produce immediate-early (IE) and early (E) proteins but that neither DNA replication nor viral particles were detectable in mouse cells. Unrepaired AD169 can express IE1 only in mouse cells. In both HCMV-infected mouse cells and MCMV-infected human cells, the knocking-down of ND10 components (PML, Daxx, and SP100) resulted in significantly increased viral-protein production. Our observations provide evidence to support our hypothesis that ND10 and ND10 components might be important defensive factors against the CMV cross-species infection

    Post-GWAS Functional Characterization of Susceptibility Variants for Chronic Lymphocytic Leukemia

    Get PDF
    Recent genome-wide association studies (GWAS) have identified several gene variants associated with sporadic chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL). Many of these CLL/SLL susceptibility loci are located in non-coding or intergenic regions, posing a significant challenge to determine their potential functional relevance. Here, we review the literature of all CLL/SLL GWAS and validation studies, and apply eQTL analysis to identify putatively functional SNPs that affect gene expression that may be causal in the pathogenesis of CLL/SLL. We tested 12 independent risk loci for their potential to alter gene expression through cis-acting mechanisms, using publicly available gene expression profiles with matching genotype information. Sixteen SNPs were identified that are linked to differential expression of SP140, a putative tumor suppressor gene previously associated with CLL/SLL. Three additional SNPs were associated with differential expression of DACT3 and GNG8, which are involved in the WNT/β-catenin- and G protein-coupled receptor signaling pathways, respectively, that have been previously implicated in CLL/SLL pathogenesis. Using in silico functional prediction tools, we found that 14 of the 19 significant eQTL SNPs lie in multiple putative regulatory elements, several of which have prior implications in CLL/SLL or other hematological malignancies. Although experimental validation is needed, our study shows that the use of existing GWAS data in combination with eQTL analysis and in silico methods represents a useful starting point to screen for putatively causal SNPs that may be involved in the etiology of CLL/SLL

    Sp100 colocalizes with HPV replication foci and restricts the productive stage of the infectious cycle

    Get PDF
    <div><p>We have shown previously that Sp100 (a component of the ND10 nuclear body) represses transcription, replication and establishment of incoming human papillomavirus (HPV) DNA in the early stages of infection. In this follow up study, we show that Sp100 does not substantially regulate viral infection in the maintenance phase, however at late stages of infection Sp100 interacts with amplifying viral genomes to repress viral processes. We find that Sp100 localizes to HPV16 replication foci generated in primary keratinocytes, to HPV31 replication foci that form in differentiated cells, and to HPV16 replication foci in CIN 1 cervical biopsies. To analyze this further, Sp100 was down regulated by siRNA treatment of differentiating HPV31 containing cells and levels of viral transcription and replication were assessed. This revealed that Sp100 represses viral transcription and replication in differentiated cells. Analysis of Sp100 binding to viral chromatin showed that Sp100 bound across the viral genome, and that binding increased at late stages of infection. Therefore, Sp100 represses the HPV life cycle at both early and late stages of infection.</p></div

    Reversible silencing of cytomegalovirus genomes by type I interferon governs virus latency.

    Get PDF
    Herpesviruses establish a lifelong latent infection posing the risk for virus reactivation and disease. In cytomegalovirus infection, expression of the major immediate early (IE) genes is a critical checkpoint, driving the lytic replication cycle upon primary infection or reactivation from latency. While it is known that type I interferon (IFN) limits lytic CMV replication, its role in latency and reactivation has not been explored. In the model of mouse CMV infection, we show here that IFNβ blocks mouse CMV replication at the level of IE transcription in IFN-responding endothelial cells and fibroblasts. The IFN-mediated inhibition of IE genes was entirely reversible, arguing that the IFN-effect may be consistent with viral latency. Importantly, the response to IFNβ is stochastic, and MCMV IE transcription and replication were repressed only in IFN-responsive cells, while the IFN-unresponsive cells remained permissive for lytic MCMV infection. IFN blocked the viral lytic replication cycle by upregulating the nuclear domain 10 (ND10) components, PML, Sp100 and Daxx, and their knockdown by shRNA rescued viral replication in the presence of IFNβ. Finally, IFNβ prevented MCMV reactivation from endothelial cells derived from latently infected mice, validating our results in a biologically relevant setting. Therefore, our data do not only define for the first time the molecular mechanism of IFN-mediated control of CMV infection, but also indicate that the reversible inhibition of the virus lytic cycle by IFNβ is consistent with the establishment of CMV latency
    corecore