27 research outputs found

    Fall Armyworm (Spodoptera frugiperda)

    Get PDF
    The fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), originated from America but is reported recently from Africa and the Asia-Pacific. FAW has caused huge international concern since its outbreak in Africa since 2016 and in Asia since mid-2018. The chapter mainly reviews its global distribution, life cycle, identification characters, strains, host plants, nature of damage, economic damage, and integrated pest management strategies available. The pest completes its life cycle on maize in 30 days (in warm summer months); in cooler temperatures, it may extend up to 60–90 days. For effective management of fall armyworm, different tools, viz., cultural control, agronomic management, breeding for resistance, natural enemies, and eco-friendly insecticides, should be used in an integrated approach. As the insect is recently introduced to Africa and the Asia-Pacific, possible management strategies and future cases of action are discussed

    Drug Treatment of Hypertension: Focus on Vascular Health

    Full text link

    Horizon scanning to assess the bioclimatic potential for the alien species Spodoptera eridania

    No full text
    BACKGROUND: The southern armyworm (SAW) Spodoptera eridania (Stoll) (Lepidoptera: Noctuidae) is native to the tropical Americas where the pest can feed on more than 100 plant species. SAW was recently detected in West and Central Africa, feeding on various crops including cassava, cotton, amaranth and tomato. The current work was carried out to predict the potential spatial distribution of SAW and four of its co‐evolved parasitoids at a global scale using the maximum entropy (Maxent) algorithm. RESULTS: SAW may not be a huge problem outside its native range (the Americas) for the time being, but may compromise crop yields in specific hotspots in coming years. The analysis of its potential distribution anticipates that the pest might easily migrate east and south from Cameroon and Gabon. CONCLUSION: The models used generally demonstrate that all the parasitoids considered are good candidates for the biological control of SAW globally, except they will not be able to establish in specific climates. The current paper discusses the potential role of biological control using parasitoids as a crucial component of a durable climate‐smart integrated management of SAW to support decision making in Africa and in other regions of bioclimatic suitability. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry
    corecore