52 research outputs found

    Tumor-Derived Microvesicles Induce Proangiogenic Phenotype in Endothelial Cells via Endocytosis

    Get PDF
    Background: Increasing evidence indicates that tumor endothelial cells (TEC) differ from normal endothelial cells (NEC). Our previous reports also showed that TEC were different from NEC. For example, TEC have chromosomal abnormality and proangiogenic properties such as high motility and proliferative activity. However, the mechanism by which TEC acquire a specific character remains unclear. To investigate this mechanism, we focused on tumor-derived microvesicles (TMV). Recent studies have shown that TMV contain numerous types of bioactive molecules and affect normal stromal cells in the tumor microenvironment. However, most of the functional mechanisms of TMV remain unclear. Methodology/Principal Findings: Here we showed that TMV isolated from tumor cells were taken up by NEC through endocytosis. In addition, we found that TMV promoted random motility and tube formation through the activation of the phosphoinositide 3-kinase/Akt pathway in NEC. Moreover, the effects induced by TMV were inhibited by the endocytosis inhibitor dynasore. Our results indicate that TMV could confer proangiogenic properties to NEC partly via endocytosis. Conclusion: We for the first time showed that endocytosis of TMV contributes to tumor angiogenesis. These findings offer new insights into cancer therapies and the crosstalk between tumor and endothelial cells mediated by TMV in the tumor microenvironment

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF

    Exosomal HIF1α supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes

    Get PDF
    It has emerged recently that exosomes are potential carriers of pro-tumorigenic factors that participate in oncogenesis. However, whether oncogenic transcription factors are transduced by exosomes is unknown. Hypoxia-inducible factor-1α (HIF1α) transcriptionally regulates numerous key aspects of tumor development and progression by promoting a more aggressive tumor phenotype, characterized by increased proliferation and invasiveness coupled with neoangiogenesis. It has been shown that the principal oncoprotein of Epstein-Barr virus (EBV), latent membrane protein 1 (LMP1), drives oncogenic processes and tumor progression of the highly invasive EBV malignancy, nasopharyngeal carcinoma (NPC). We now demonstrate that endogenous HIF1α is detectable in exosomes and that LMP1 significantly increases levels of HIF1α in exosomes. HIF1 recovered from exosomes retains DNA-binding activity and is transcriptionally active in recipient cells after exosome uptake. We also show that treatment of EBV-negative cells with LMP1-exosomes increases migration and invasiveness of NP cell lines in functional assays, which correlates with the phenotype associated with epithelial-mesenchymal transition (EMT). In addition, we provide evidence that HIF1α itself participates in exosome-mediated pro-metastatic effects in recipient cells, as exosome-mediated delivery of active and inactive forms of HIF1α results in reciprocal changes in the expression of E- and N-cadherins associated with EMT. Further, immunohistochemical analysis of NPC tumor tissues revealed direct correlation between protein levels of LMP1 and of the endosome/exosome marker tetraspanin, CD63, which suggests an increase in exosome formation in this EBV-positive malignancy. We hypothesize that exosome-mediated transfer of functional pro-metastatic factors by LMP1-positive NPC cells to surrounding tumor cells promotes cancer progression.Oncogene advance online publication, 24 March 2014; doi:10.1038/onc.2014.66
    • 

    corecore