123 research outputs found
Sideband Cooling Micromechanical Motion to the Quantum Ground State
The advent of laser cooling techniques revolutionized the study of many
atomic-scale systems. This has fueled progress towards quantum computers by
preparing trapped ions in their motional ground state, and generating new
states of matter by achieving Bose-Einstein condensation of atomic vapors.
Analogous cooling techniques provide a general and flexible method for
preparing macroscopic objects in their motional ground state, bringing the
powerful technology of micromechanics into the quantum regime. Cavity opto- or
electro-mechanical systems achieve sideband cooling through the strong
interaction between light and motion. However, entering the quantum regime,
less than a single quantum of motion, has been elusive because sideband cooling
has not sufficiently overwhelmed the coupling of mechanical systems to their
hot environments. Here, we demonstrate sideband cooling of the motion of a
micromechanical oscillator to the quantum ground state. Entering the quantum
regime requires a large electromechanical interaction, which is achieved by
embedding a micromechanical membrane into a superconducting microwave resonant
circuit. In order to verify the cooling of the membrane motion into the quantum
regime, we perform a near quantum-limited measurement of the microwave field,
resolving this motion a factor of 5.1 from the Heisenberg limit. Furthermore,
our device exhibits strong-coupling allowing coherent exchange of microwave
photons and mechanical phonons. Simultaneously achieving strong coupling,
ground state preparation and efficient measurement sets the stage for rapid
advances in the control and detection of non-classical states of motion,
possibly even testing quantum theory itself in the unexplored region of larger
size and mass.Comment: 13 pages, 7 figure
Menstrual function among women exposed to polybrominated biphenyls: A follow-up prevalence study
BACKGROUND: Alteration in menstrual cycle function is suggested among rhesus monkeys and humans exposed to polybrominated biphenyls (PBBs) and structurally similar polychlorinated biphenyls (PCBs). The feedback system for menstrual cycle function potentially allows multiple pathways for disruption directly through the hypothalamic-pituitary-ovarian axis and indirectly through alternative neuroendocrine axes. METHODS: The Michigan Female Health Study was conducted during 1997–1998 among women in a cohort exposed to PBBs in 1973. This study included 337 women with self-reported menstrual cycles of 20–35 days (age range: 24–56 years). Current PBB levels were estimated by exponential decay modeling of serum PBB levels collected from 1976–1987 during enrollment in the Michigan PBB cohort. Linear regression models for menstrual cycle length and the logarithm of bleed length used estimated current PBB exposure or enrollment PBB exposure categorized in tertiles, and for the upper decile. All models were adjusted for serum PCB levels, age, body mass index, history of at least 10% weight loss in the past year, physical activity, smoking, education, and household income. RESULTS: Higher levels of physical activity were associated with shorter bleed length, and increasing age was associated with shorter cycle length. Although no overall association was found between PBB exposure and menstrual cycle characteristics, a significant interaction between PBB exposures with past year weight loss was found. Longer bleed length and shorter cycle length were associated with higher PBB exposure among women with past year weight loss. CONCLUSION: This study suggests that PBB exposure may impact ovarian function as indicated by menstrual cycle length and bleed length. However, these associations were found among the small number of women with recent weight loss suggesting either a chance finding or that mobilization of PBBs from lipid stores may be important. These results should be replicated with larger numbers of women exposed to similar lipophilic compounds
Asymmetric interiors for small black holes
We develop the representation of infalling observers and bulk fields in the
CFT as a way to understand the black hole interior in AdS. We first discuss
properties of CFT states which are dual to black holes. We then show that in
the presence of a Killing horizon bulk fields can be decomposed into pieces we
call ingoing and outgoing. The ingoing field admits a simple operator
representation in the CFT, even inside a small black hole at late times, which
leads to a simple CFT description of infalling geodesics. This means classical
infalling observers will experience the classical geometry in the interior. The
outgoing piece of the field is more subtle. In an eternal two-sided geometry it
can be represented as an operator on the left CFT. In a stable one-sided
geometry it can be described using entanglement via the PR construction. But in
an evaporating black hole trans-horizon entanglement breaks down at the Page
time, which means that for old black holes the PR construction fails and the
outgoing field does not see local geometry. This picture of the interior allows
the CFT to reconcile unitary Hawking evaporation with the classical experience
of infalling observers.Comment: 48 pages, LaTeX, 8 figures. v2: minor edits, additional reference.
v3: version to appear in JHE
Deletion of the Pluripotency-Associated Tex19.1 Gene Causes Activation of Endogenous Retroviruses and Defective Spermatogenesis in Mice
As genetic information is transmitted through successive generations, it passes between pluripotent cells in the early embryo and germ cells in the developing foetus and adult animal. Tex19.1 encodes a protein of unknown function, whose expression is restricted to germ cells and pluripotent cells. During male spermatogenesis, Tex19.1 expression is highest in mitotic spermatogonia and diminishes as these cells differentiate and progress through meiosis. In pluripotent stem cells, Tex19.1 expression is also downregulated upon differentiation. However, it is not clear whether Tex19.1 has an essential function in germ cells or pluripotent stem cells, or what that function might be. To analyse the potential role of Tex19.1 in pluripotency or germ cell function we have generated Tex19.1−/− knockout mice and analysed the Tex19.1−/− mutant phenotype. Adult Tex19.1−/− knockout males exhibit impaired spermatogenesis. Immunostaining and histological analysis revealed defects in meiotic chromosome synapsis, the persistence of DNA double-strand breaks during meiosis, and a loss of post-meiotic germ cells in the testis. Furthermore, expression of a class of endogenous retroviruses is upregulated during meiosis in the Tex19.1−/− testes. Increased transposition of endogenous retroviruses in the germline of Tex19.1−/− mutant mice, and the concomitant increase in DNA damage, may be sufficient to disrupt the normal processes of recombination and chromosome synapsis during meiosis and cause defects in spermatogenesis. Our results suggest that Tex19.1 is part of a specialised mechanism that operates in the germline to repress transposable genetic elements and maintain genomic stability through successive generations
Recommended from our members
Effects of degree and timing of social housing on reversal learning and response to novel objects in dairy calves
Rodents and primates deprived of early social contact exhibit deficits in learning and behavioural
flexibility. They often also exhibit apparent signs of elevated anxiety, although the relationship between these effects has not been studied. To investigate whether dairy calves are similarly affected, we first compared calves housed in standard individual pens
(n = 7) to those housed in a dynamic group with access to their mothers (n = 8). All calves learned to approach the correct stimulus in a visual discrimination task. Only one individually housed calf was able to re-learn the task when the stimuli were reversed, compared to all but one calf from the group. A second experiment investigated whether this effect might be explained by anxiety in individually housed animals interfering with their learning, and tested varying degrees of social contact in addition to the complex group: pair housing beginning early (approximately 6 days old) and late (6 weeks old). Again, fewer individually reared calves learned the reversal task (2 of 10 or 20%) compared to early paired and grouped calves (16 of 21 or 76% of calves). Late paired calves had intermediate success. Individually housed calves were slower to touch novel objects, but the magnitude of the fear response did not correlate with reversal performance. We conclude that individually housed calves have learning deficits, but these deficits were not likely associated with increased
anxiety
Cdc45 Limits Replicon Usage from a Low Density of preRCs in Mammalian Cells
Little is known about mammalian preRC stoichiometry, the number of preRCs on chromosomes, and how this relates to replicon size and usage. We show here that, on average, each 100-kb of the mammalian genome contains a preRC composed of approximately one ORC hexamer, 4–5 MCM hexamers, and 2 Cdc6. Relative to these subunits, ∼0.35 total molecules of the pre-Initiation Complex factor Cdc45 are present. Thus, based on ORC availability, somatic cells contain ∼70,000 preRCs of this average total stoichiometry, although subunits may not be juxtaposed with each other. Except for ORC, the chromatin-bound complement of preRC subunits is even lower. Cdc45 is present at very low levels relative to the preRC subunits, but is highly stable, and the same limited number of stable Cdc45 molecules are present from the beginning of S-phase to its completion. Efforts to artificially increase Cdc45 levels through ectopic expression block cell growth. However, microinjection of excess purified Cdc45 into S-phase nuclei activates additional replication foci by three-fold, indicating that Cdc45 functions to activate dormant preRCs and is rate-limiting for somatic replicon usage. Paradoxically, although Cdc45 colocalizes in vivo with some MCM sites and is rate-limiting for DNA replication to occur, neither Cdc45 nor MCMs colocalize with active replication sites. Embryonic metazoan chromatin consists of small replicons that are used efficiently via an excess of preRC subunits. In contrast, somatic mammalian cells contain a low density of preRCs, each containing only a few MCMs that compete for limiting amounts of Cdc45. This provides a molecular explanation why, relative to embryonic replicon dynamics, somatic replicons are, on average, larger and origin efficiency tends to be lower. The stable, continuous, and rate-limiting nature of Cdc45 suggests that Cdc45 contributes to the staggering of replicon usage throughout S-phase, and that replicon activation requires reutilization of existing Cdc45 during S-phase
Directed Evaluation of Enterotoxigenic Escherichia coli Autotransporter Proteins as Putative Vaccine Candidates
Diarrheal diseases are responsible for more than 1.5 million deaths annually in developing countries. Enterotoxigenic E. coli (ETEC) are among the most common bacterial causes of diarrhea, accounting for an estimated 300,000–500,000 deaths each year, mostly in young children. There unfortunately is not yet a vaccine that can offer sustained, broad-based protection against ETEC. While most vaccine development effort has focused on plasmid-encoded finger-like ETEC adhesin structures known as colonization factors, additional effort is needed to identify conserved target antigens. Epidemiologic studies suggest that immune responses to uncharacterized, chromosomally encoded antigens could contribute to protection resulting from repeated infections. Earlier studies of immune responses to ETEC infection had identified a class of surface-expressed molecules known as autotransporters (AT). Therefore, available ETEC genome sequences were examined to identify conserved ETEC autotransporters not shared by the commensal E. coli HS strain, followed by studies of the immune response to these antigens, and tests of their utility as vaccine components. Two chromosomally encoded ATs, identified in ETEC, but not in HS, were found to be immunogenic and protective in an animal model, suggesting that conserved AT molecules contribute to protective immune responses that follow natural ETEC infection and offering new potential targets for vaccines
The course of depressive symptoms during the postmenopause: a review
As the Australian population ages, significantly more women are entering the postmenopausal stage of the climacteric, yet research focusing on the prevalence of depressive symptoms in this stage of ovarian ageing is scarce. This review will examine the information provided by studies that have a cohort with data of adequate duration to explore depressive symptom prevalence in the early and late postmenopause. Longitudinal epidemiological studies of women transitioning through the postmenopause that included measures of mood and/or depressive symptoms were identified through searches of MEDLINE (1980-2014) and PsycINFO (1980-2014) databases. Population based studies with at least two time points of assessment were included. Longitudinal studies of ageing that did not categorise women as postmenopausal were not included, as this was outside the scope of this review. Prevalence estimates of depressive symptoms varied between studies and ranged from 8.5Â % to 25.7Â % with percentages between 22 and 25Â % being most consistently reported. Surgical postmenopause groups reported higher ratings of depressive symptoms at 18-42Â % and higher incidence of major depressive disorder in all but one study. The prevalence of Major Depressive Disorder also varied with ranges from <1Â % to 42Â % reported. Wide ranges in prevalence were reported in the literature. Differences in definitions, inconsistent sample sizes and varying measures make it difficult to compare results across studies. The specific inclusions and exclusions of sub-samples of larger cohorts are at times inconsistent with epidemiological acquisition and, as such, impact upon generalizability of results to a healthy population
- …