58 research outputs found

    Part-time and full-time medical specialists, are there differences in allocation of time?

    Get PDF
    BACKGROUND: An increasing number of medical specialists prefer to work part-time. This development can be found worldwide. Problems to be faced in the realization of part-time work in medicine include the division of night and weekend shifts, as well as communication between physicians and continuity of care. People tend to think that physicians working part-time are less devoted to their work, implying that full-time physicians complete a greater number of tasks. The central question in this article is whether part-time medical specialists allocate their time differently to their tasks than full-time medical specialists. METHODS: A questionnaire was sent by mail to all internists (N = 817), surgeons (N = 693) and radiologists (N = 621) working in general hospitals in the Netherlands. Questions were asked about the actual situation, such as hours worked and night and weekend shifts. The response was 53% (n = 411) for internists, 52% (n = 359) for surgeons, and 36% (n = 213) for radiologists. Due to non-response on specific questions there were 367 internists, 316 surgeons, and 71 radiologists included in the analyses. Multilevel analyses were used to analyze the data. RESULTS: Part-time medical specialists do not spend proportionally more time on direct patient care. With respect to night and weekend shifts, part-time medical specialists account for proportionally more or an equal share of these shifts. The number of hours worked per FTE is higher for part-time than for full-time medical specialists, although this difference is only significant for surgeons. CONCLUSION: In general, part-time medical specialists do their share of the job. However, we focussed on input only. Besides input, output like the numbers of services provided deserves attention as well. The trend in medicine towards more part-time work has an important consequence: more medical specialists are needed to get the work done. Therefore, a greater number of medical specialists have to be trained. Part-time work is not only a female concern; there are also (international) trends for male medical specialists that show a decline in the number of hours worked. This indicates an overall change in attitudes towards the number of hours medical specialists should work

    Additive QTLs on three chromosomes control flowering time in woodland strawberry (Fragaria vesca L.)

    Get PDF
    Flowering time is an important trait that affects survival, reproduction and yield in both wild and cultivated plants. Therefore, many studies have focused on the identification of flowering time quantitative trait locus (QTLs) in different crops, and molecular control of this trait has been extensively investigated in model species. Here we report the mapping of QTLs for flowering time and vegetative traits in a large woodland strawberry mapping population that was phenotyped both under field conditions and in a greenhouse after flower induction in the field. The greenhouse experiment revealed additive QTLs in three linkage groups (LG), two on both LG4 and LG7, and one on LG6 that explain about half of the flowering time variance in the population. Three of the QTLs were newly identified in this study, and one co-localized with the previously characterized FvTFL1 gene. An additional strong QTL corresponding to previously mapped PFRU was detected in both field and greenhouse experiments indicating that gene(s) in this locus can control the timing of flowering in different environments in addition to the duration of flowering and axillary bud differentiation to runners and branch crowns. Several putative flowering time genes were identified in these QTL regions that await functional validation. Our results indicate that a few major QTLs may control flowering time and axillary bud differentiation in strawberries. We suggest that the identification of causal genes in the diploid strawberry may enable fine tuning of flowering time and vegetative growth in the closely related octoploid cultivated strawberry.Peer reviewe

    Control of Flowering in Strawberries

    Get PDF
    Strawberries (Fragaria sp.) are small perennial plants capable of both sexual reproduction through seeds and clonal reproduction via runners. Because vegetative and generative developmental programs are tightly connected, the control of flowering is presented here in the context of the yearly growth cycle. The rosette crown of strawberry consists of a stem with short internodes produced from the apical meristem. Each node harbors one trifoliate leaf and an axillary bud. The fate of axillary buds is dictated by environmental conditions; high temperatures and long days (LDs) promote axillary bud development into runners, whereas cool temperature and short days (SDs) favor the formation of branch crowns. SDs and cool temperature also promote flowering; under these conditions, the main shoot apical meristem is converted into a terminal inflorescence, and vegetative growth is continued from the uppermost axillary branch crown. The environmental factors that regulate vegetative and generative development in strawberries have been reasonably well characterized and are reviewed in the first two chapters. The genetic basis of the physiological responses in strawberries is much less clear. To provide a point of reference for the flowering pathways described in strawberries so far, a short review on the molecular mechanisms controlling flowering in the model plant Arabidopsis is given. The last two chapters will then describe the current knowledge on the molecular mechanisms controlling the physiological responses in strawberries.Peer reviewe

    Transcriptional control in the prereplicative phase of T4 development

    Get PDF
    Control of transcription is crucial for correct gene expression and orderly development. For many years, bacteriophage T4 has provided a simple model system to investigate mechanisms that regulate this process. Development of T4 requires the transcription of early, middle and late RNAs. Because T4 does not encode its own RNA polymerase, it must redirect the polymerase of its host, E. coli, to the correct class of genes at the correct time. T4 accomplishes this through the action of phage-encoded factors. Here I review recent studies investigating the transcription of T4 prereplicative genes, which are expressed as early and middle transcripts. Early RNAs are generated immediately after infection from T4 promoters that contain excellent recognition sequences for host polymerase. Consequently, the early promoters compete extremely well with host promoters for the available polymerase. T4 early promoter activity is further enhanced by the action of the T4 Alt protein, a component of the phage head that is injected into E. coli along with the phage DNA. Alt modifies Arg265 on one of the two α subunits of RNA polymerase. Although work with host promoters predicts that this modification should decrease promoter activity, transcription from some T4 early promoters increases when RNA polymerase is modified by Alt. Transcription of T4 middle genes begins about 1 minute after infection and proceeds by two pathways: 1) extension of early transcripts into downstream middle genes and 2) activation of T4 middle promoters through a process called sigma appropriation. In this activation, the T4 co-activator AsiA binds to Region 4 of σ70, the specificity subunit of RNA polymerase. This binding dramatically remodels this portion of σ70, which then allows the T4 activator MotA to also interact with σ70. In addition, AsiA restructuring of σ70 prevents Region 4 from forming its normal contacts with the -35 region of promoter DNA, which in turn allows MotA to interact with its DNA binding site, a MotA box, centered at the -30 region of middle promoter DNA. T4 sigma appropriation reveals how a specific domain within RNA polymerase can be remolded and then exploited to alter promoter specificity
    corecore