680 research outputs found

    Measurement of Proton Leak in Isolated Mitochondria.

    Get PDF
    Oxidative phosphorylation is an important energy-conserving mechanism coupling mitochondrial electron transfer to ATP synthesis. Coupling between respiration and phosphorylation is not fully efficient due to proton leaks. In this chapter, we present a method to measure proton leak activity in isolated mitochondria. The relative strength of a modular kinetic approach to probe oxidative phosphorylation is emphasized

    Uncoupling protein-1 (UCP1) contributes to the basal proton conductance of brown adipose tissue mitochondria

    Get PDF
    Proton leak pathways uncouple substrate oxidation from ATP synthesis in mitochondria. These pathways are classified as basal (not regulated) or inducible (activated and inhibited). Previously it was found that over half of the basal proton conductance of muscle mitochondria was catalyzed by the adenine nucleotide translocase (ANT), an abundant mitochondrial anion carrier protein. To determine whether ANT is the unique protein catalyst, or one of many proteins that catalyze basal proton conductance, we measured proton leak kinetics in mitochondria isolated from brown adipose tissue (BAT). BAT can express another mitochondrial anion carrier, UCP1, at concentrations similar to ANT. Basal proton conductance was measured under conditions where UCP1 and ANT were catalytically inactive and was found to be lower in mitochondria from UCP1 knockout mice compared to wild-type. Ablation of another abundant inner membrane protein, nicotinamide nucleotide transhydrogenase, had no effect on proton leak kinetics in mitochondria from liver, kidney or muscle, showing that basal proton conductance is not catalyzed by all membrane proteins. We identify UCP1 as a second protein propagating basal proton leak, lending support to the hypothesis that basal leak pathways are perpetrated by members of the mitochondrial anion carrier family but not by other mitochondrial inner membrane proteins

    Background risk of breast cancer and the association between physical activity and mammographic density

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/ by/4.0

    Measurement of the Absolute Magnitude and Time Courses of Mitochondrial Membrane Potential in Primary and Clonal Pancreatic Beta-Cells

    Get PDF
    The aim of this study was to simplify, improve and validate quantitative measurement of the mitochondrial membrane potential (Ξ”ΟˆM) in pancreatic Ξ²-cells. This built on our previously introduced calculation of the absolute magnitude of Ξ”ΟˆM in intact cells, using time-lapse imaging of the non-quench mode fluorescence of tetramethylrhodamine methyl ester and a bis-oxonol plasma membrane potential (Ξ”ΟˆP) indicator. Ξ”ΟˆM is a central mediator of glucose-stimulated insulin secretion in pancreatic Ξ²-cells. Ξ”ΟˆM is at the crossroads of cellular energy production and demand, therefore precise assay of its magnitude is a valuable tool to study how these processes interplay in insulin secretion. Dispersed islet cell cultures allowed cell type-specific, single-cell observations of cell-to-cell heterogeneity of Ξ”ΟˆM and Ξ”ΟˆP. Glucose addition caused hyperpolarization of Ξ”ΟˆM and depolarization of Ξ”ΟˆP. The hyperpolarization was a monophasic step increase, even in cells where the Ξ”ΟˆP depolarization was biphasic. The biphasic response of Ξ”ΟˆP was associated with a larger hyperpolarization of Ξ”ΟˆM than the monophasic response. Analysis of the relationships between Ξ”ΟˆP and Ξ”ΟˆM revealed that primary dispersed Ξ²-cells responded to glucose heterogeneously, driven by variable activation of energy metabolism. Sensitivity analysis of the calibration was consistent with Ξ²-cells having substantial cell-to-cell variations in amounts of mitochondria, and this was predicted not to impair the accuracy of determinations of relative changes in Ξ”ΟˆM and Ξ”ΟˆP. Finally, we demonstrate a significant problem with using an alternative Ξ”ΟˆM probe, rhodamine 123. In glucose-stimulated and oligomycin-inhibited Ξ²-cells the principles of the rhodamine 123 assay were breached, resulting in misleading conclusion

    Misconceptions about Aerobic and Anaerobic Energy Expenditure

    Get PDF
    The measurement of gas exchange has played an invaluable role in metabolic interpretation. The uptake of 1 liter of oxygen is often converted into an energy expenditure estimate of 21.1 kilojoules (e.g., 1 L O2 = 21.1 kJ or ~5 kcal). This article demonstrates both the importance of such a conversion and the potential for misinterpretation. Oxygen uptake during heavy and severe exercise will also be discussed

    Investigation of Mitochondrial Dysfunction by Sequential Microplate-Based Respiration Measurements from Intact and Permeabilized Neurons

    Get PDF
    Mitochondrial dysfunction is a component of many neurodegenerative conditions. Measurement of oxygen consumption from intact neurons enables evaluation of mitochondrial bioenergetics under conditions that are more physiologically realistic compared to isolated mitochondria. However, mechanistic analysis of mitochondrial function in cells is complicated by changing energy demands and lack of substrate control. Here we describe a technique for sequentially measuring respiration from intact and saponin-permeabilized cortical neurons on single microplates. This technique allows control of substrates to individual electron transport chain complexes following permeabilization, as well as side-by-side comparisons to intact cells. To illustrate the utility of the technique, we demonstrate that inhibition of respiration by the drug KB-R7943 in intact neurons is relieved by delivery of the complex II substrate succinate, but not by complex I substrates, via acute saponin permeabilization. In contrast, methyl succinate, a putative cell permeable complex II substrate, failed to rescue respiration in intact neurons and was a poor complex II substrate in permeabilized cells. Sequential measurements of intact and permeabilized cell respiration should be particularly useful for evaluating indirect mitochondrial toxicity due to drugs or cellular signaling events which cannot be readily studied using isolated mitochondria
    • …
    corecore