8 research outputs found

    Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The extended light-harvesting complex (LHC) protein superfamily is a centerpiece of eukaryotic photosynthesis, comprising the LHC family and several families involved in photoprotection, like the LHC-like and the photosystem II subunit S (PSBS). The evolution of this complex superfamily has long remained elusive, partially due to previously missing families.</p> <p>Results</p> <p>In this study we present a meticulous search for LHC-like sequences in public genome and expressed sequence tag databases covering twelve representative photosynthetic eukaryotes from the three primary lineages of plants (Plantae): glaucophytes, red algae and green plants (Viridiplantae). By introducing a coherent classification of the different protein families based on both, hidden Markov model analyses and structural predictions, numerous new LHC-like sequences were identified and several new families were described, including the red lineage chlorophyll <it>a/b</it>-binding-like protein (RedCAP) family from red algae and diatoms. The test of alternative topologies of sequences of the highly conserved chlorophyll-binding core structure of LHC and PSBS proteins significantly supports the independent origins of LHC and PSBS families via two unrelated internal gene duplication events. This result was confirmed by the application of cluster likelihood mapping.</p> <p>Conclusions</p> <p>The independent evolution of LHC and PSBS families is supported by strong phylogenetic evidence. In addition, a possible origin of LHC and PSBS families from different homologous members of the stress-enhanced protein subfamily, a diverse and anciently paralogous group of two-helix proteins, seems likely. The new hypothesis for the evolution of the extended LHC protein superfamily proposed here is in agreement with the character evolution analysis that incorporates the distribution of families and subfamilies across taxonomic lineages. Intriguingly, stress-enhanced proteins, which are universally found in the genomes of green plants, red algae, glaucophytes and in diatoms with complex plastids, could represent an important and previously missing link in the evolution of the extended LHC protein superfamily.</p

    Non-Photochemical Quenching in Cryptophyte Alga Rhodomonas salina Is Located in Chlorophyll a/c Antennae

    Get PDF
    Photosynthesis uses light as a source of energy but its excess can result in production of harmful oxygen radicals. To avoid any resulting damage, phototrophic organisms can employ a process known as non-photochemical quenching (NPQ), where excess light energy is safely dissipated as heat. The mechanism(s) of NPQ vary among different phototrophs. Here, we describe a new type of NPQ in the organism Rhodomonas salina, an alga belonging to the cryptophytes, part of the chromalveolate supergroup. Cryptophytes are exceptional among photosynthetic chromalveolates as they use both chlorophyll a/c proteins and phycobiliproteins for light harvesting. All our data demonstrates that NPQ in cryptophytes differs significantly from other chromalveolates – e.g. diatoms and it is also unique in comparison to NPQ in green algae and in higher plants: (1) there is no light induced xanthophyll cycle; (2) NPQ resembles the fast and flexible energetic quenching (qE) of higher plants, including its fast recovery; (3) a direct antennae protonation is involved in NPQ, similar to that found in higher plants. Further, fluorescence spectroscopy and biochemical characterization of isolated photosynthetic complexes suggest that NPQ in R. salina occurs in the chlorophyll a/c antennae but not in phycobiliproteins. All these results demonstrate that NPQ in cryptophytes represents a novel class of effective and flexible non-photochemical quenching
    corecore