52 research outputs found

    Zebrafish: a vertebrate tool for studying basal body biogenesis, structure, and function.

    Get PDF
    Understanding the role of basal bodies (BBs) during development and disease has been largely overshadowed by research into the function of the cilium. Although these two organelles are closely associated, they have specific roles to complete for successful cellular development. Appropriate development and function of the BB are fundamental for cilia function. Indeed, there are a growing number of human genetic diseases affecting ciliary development, known collectively as the ciliopathies. Accumulating evidence suggests that BBs establish cell polarity, direct ciliogenesis, and provide docking sites for proteins required within the ciliary axoneme. Major contributions to our knowledge of BB structure and function have been provided by studies in flagellated or ciliated unicellular eukaryotic organisms, specifically Tetrahymena and Chlamydomonas. Reproducing these and other findings in vertebrates has required animal in vivo models. Zebrafish have fast become one of the primary organisms of choice for modeling vertebrate functional genetics. Rapid ex-utero development, proficient egg laying, ease of genetic manipulation, and affordability make zebrafish an attractive vertebrate research tool. Furthermore, zebrafish share over 80 % of disease causing genes with humans. In this article, we discuss the merits of using zebrafish to study BB functional genetics, review current knowledge of zebrafish BB ultrastructure and mechanisms of function, and consider the outlook for future zebrafish-based BB studies

    Temporal variation of biomass and nutrient status of azolla filiculoides lam: (sal viniaceae) in a small shallow dystrophic lake

    No full text
    This study determined the temporal variation of the biomass and the concentrations of carbon, nitrogen and phosphorus in Azolla filiculoides Lam. in a small (0.5 ha) shallow dystrophic lake located in the city of Rio Grande (Rio Grande do Sul State, Brazil). Method: Sampling was conducted monthly between November 2000 and October 2001. The macrophytes were collected randomly in three replicates with a circular collector 0.3 m in diameter and subsequently washed with tap water and oven-dried at 60 °C for determination of the dry weight and the nutrient status (i.e., carbon, nitrogen and phosphorus). Primary productivity was estimated by the variation in biomass among successive samples. Results: A. filiculoides was present in the lake throughout the year and occupied between 50 and 80% of the surface area. The biomass values ranged from 34.2 g DW.m–2, recorded in May (autumn), to 170.9 g DW.m–2 in January (summer). The highest rate of primary productivity was 3.3 g DW.m–2.d–1, observed in June. The concentrations of carbon, nitrogen and phosphorus in the plant ranged between 403 and 551 g.kg–1, 13.4 and 25.7 g.kg–1 and 0.5 and 1.9 g.kg–1, respectively. The water N:P ratio ranged between 19:1 and 368:1. Conclusion: The coverage of the surface of the lake by A. filiculoides throughout the study period and the nutritional status of the plant demonstrate the importance of the cycling of nutrients by macrophytes in this aquatic environment. The higher N:P ratio in the water column, compared with other neighboring environments without macrophytes, shows that the enrichment of the lake may result from the biological N-fixation activity produced by A. filiculoides.Este estudo determinou a variação temporal da biomassa e as concentrações de carbono, nitrogênio e fósforo de Azolla filiculoides Lam., em um pequeno lago raso distrófico situado no município do Rio Grande (Rio Grande do Sul, Brasil). Método: As amostragens foram realizadas mensalmente no período entre novembro de 2000 e outubro de 2001. As macrófitas foram coletadas aleatoriamente em três repetições, utilizando-se coletor circular de 0,3 m de diâmetro e posteriormente lavadas com água corrente e secas em estufa 60 °C para determinação do peso seco e dos nutrientes: carbono, nitrogênio e fósforo. A produção primária foi estimada pela variação de biomassa entre coletas sucessivas. Resultados: A. filiculoides esteve presente no lago durante todo o ano, ocupando sempre entre 50 e 80% da superfície do lago. Os valores de biomassa variaram entre 34,2 g PS.m–2, registrado em maio (outono) e 170,9 g PS.m–2 em janeiro (verão). A maior taxa de produtividade primária foi 3,3 g PS.m–2.d–1 foi registrada em Junho. As concentrações de carbono, nitrogênio e fósforo na planta variaram entre: 403 e 551 g. kg–1, 13,4 e 25,7 g.kg–1 e 0,5 e 1,9 g.kg–1, respectivamente. Os valores da relação N:P na coluna de água variou entre 19:1 e 368:1. Conclusão: A cobertura da superfície do lago por A. filiculoides durante todo o período do estudo e o seu estado nutricional demonstram sua importância na ciclagem dos nutrientes neste ambiente aquático. A maior relação N:P na coluna de água quando comparada a outro ambiente próximo sem a presença desta macrófita, apoia a ideia de que A. filiculoides pode ser a responsável pelo enriquecimento do lago por meio da atividade de fixação biológica de nitrogênio

    Photosynthesis of Aquatic Plants Under Natural Conditions

    No full text
    • …
    corecore