166 research outputs found
Intra-Individual Variability in Alzheimer's Disease and Cognitive Aging: Definitions, Context, and Effect Sizes
To explore different definitions of intra-individual variability (IIV) to summarize performance on commonly utilized cognitive tests (Mini Mental State Exam; Clock Drawing Test); compare them and their potential to differentiate clinically-defined populations; and to examine their utility in predicting clinical change in individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNI).) were computed for each of these definitions in 500 simulated replicates using scores on the Mini Mental State Exam and Clock Drawing Test. IIV was computed based on test items separately (‘within test’ IIV) and the two tests together (‘across test’ IIV). The best performing definition was then used to compute IIV for a third test, the Alzheimer's Disease Assessment Scale-Cognitive, and the simulations and effect sizes were again computed. All effect size estimates based on simulated data were compared to those computed based on the total scores in the observed data. Association between total score and IIV summaries of the tests and the Clinician's Dementia Rating were estimated to test the utility of IIV in predicting clinically meaningful changes in the cohorts over 12- and 24-month intervals.ES estimates differed substantially depending on the definition of IIV and the test(s) on which IIV was based. IIV (coefficient of variation) summaries of MMSE and Clock-Drawing performed similarly to their total scores, the ADAS total performed better than its IIV summary.IIV can be computed within (items) or across (totals) items on commonly-utilized cognitive tests, and may provide a useful additional summary measure of neuropsychological test performance
Protocol for the 'e-Nudge trial' : a randomised controlled trial of electronic feedback to reduce the cardiovascular risk of individuals in general practice [ISRCTN64828380]
Background: Cardiovascular disease (including coronary heart disease and stroke) is a major
cause of death and disability in the United Kingdom, and is to a large extent preventable, by lifestyle
modification and drug therapy. The recent standardisation of electronic codes for cardiovascular
risk variables through the United Kingdom's new General Practice contract provides an
opportunity for the application of risk algorithms to identify high risk individuals. This randomised
controlled trial will test the benefits of an automated system of alert messages and practice
searches to identify those at highest risk of cardiovascular disease in primary care databases.
Design: Patients over 50 years old in practice databases will be randomised to the intervention
group that will receive the alert messages and searches, and a control group who will continue to
receive usual care. In addition to those at high estimated risk, potentially high risk patients will be
identified who have insufficient data to allow a risk estimate to be made. Further groups identified
will be those with possible undiagnosed diabetes, based either on elevated past recorded blood
glucose measurements, or an absence of recent blood glucose measurement in those with
established cardiovascular disease.
Outcome measures: The intervention will be applied for two years, and outcome data will be
collected for a further year. The primary outcome measure will be the annual rate of cardiovascular
events in the intervention and control arms of the study. Secondary measures include the
proportion of patients at high estimated cardiovascular risk, the proportion of patients with missing
data for a risk estimate, and the proportion with undefined diabetes status at the end of the trial
Designing an automated clinical decision support system to match clinical practice guidelines for opioid therapy for chronic pain
Abstract Background Opioid prescribing for chronic pain is common and controversial, but recommended clinical practices are followed inconsistently in many clinical settings. Strategies for increasing adherence to clinical practice guideline recommendations are needed to increase effectiveness and reduce negative consequences of opioid prescribing in chronic pain patients. Methods Here we describe the process and outcomes of a project to operationalize the 2003 VA/DOD Clinical Practice Guideline for Opioid Therapy for Chronic Non-Cancer Pain into a computerized decision support system (DSS) to encourage good opioid prescribing practices during primary care visits. We based the DSS on the existing ATHENA-DSS. We used an iterative process of design, testing, and revision of the DSS by a diverse team including guideline authors, medical informatics experts, clinical content experts, and end-users to convert the written clinical practice guideline into a computable algorithm to generate patient-specific recommendations for care based upon existing information in the electronic medical record (EMR), and a set of clinical tools. Results The iterative revision process identified numerous and varied problems with the initially designed system despite diverse expert participation in the design process. The process of operationalizing the guideline identified areas in which the guideline was vague, left decisions to clinical judgment, or required clarification of detail to insure safe clinical implementation. The revisions led to workable solutions to problems, defined the limits of the DSS and its utility in clinical practice, improved integration into clinical workflow, and improved the clarity and accuracy of system recommendations and tools. Conclusions Use of this iterative process led to development of a multifunctional DSS that met the approval of the clinical practice guideline authors, content experts, and clinicians involved in testing. The process and experiences described provide a model for development of other DSSs that translate written guidelines into actionable, real-time clinical recommendations.http://deepblue.lib.umich.edu/bitstream/2027.42/78267/1/1748-5908-5-26.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/2/1748-5908-5-26.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/3/1748-5908-5-26-S3.TIFFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/4/1748-5908-5-26-S2.TIFFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/5/1748-5908-5-26-S1.TIFFPeer Reviewe
Can computerized clinical decision support systems improve practitioners' diagnostic test ordering behavior? A decision-maker-researcher partnership systematic review
<p>Abstract</p> <p>Background</p> <p>Underuse and overuse of diagnostic tests have important implications for health outcomes and costs. Decision support technology purports to optimize the use of diagnostic tests in clinical practice. The objective of this review was to assess whether computerized clinical decision support systems (CCDSSs) are effective at improving ordering of tests for diagnosis, monitoring of disease, or monitoring of treatment. The outcome of interest was effect on the diagnostic test-ordering behavior of practitioners.</p> <p>Methods</p> <p>We conducted a decision-maker-researcher partnership systematic review. We searched MEDLINE, EMBASE, Ovid's EBM Reviews database, Inspec, and reference lists for eligible articles published up to January 2010. We included randomized controlled trials comparing the use of CCDSSs to usual practice or non-CCDSS controls in clinical care settings. Trials were eligible if at least one component of the CCDSS gave suggestions for ordering or performing a diagnostic procedure. We considered studies 'positive' if they showed a statistically significant improvement in at least 50% of test ordering outcomes.</p> <p>Results</p> <p>Thirty-five studies were identified, with significantly higher methodological quality in those published after the year 2000 (<it>p </it>= 0.002). Thirty-three trials reported evaluable data on diagnostic test ordering, and 55% (18/33) of CCDSSs improved testing behavior overall, including 83% (5/6) for diagnosis, 63% (5/8) for treatment monitoring, 35% (6/17) for disease monitoring, and 100% (3/3) for other purposes. Four of the systems explicitly attempted to reduce test ordering rates and all succeeded. Factors of particular interest to decision makers include costs, user satisfaction, and impact on workflow but were rarely investigated or reported.</p> <p>Conclusions</p> <p>Some CCDSSs can modify practitioner test-ordering behavior. To better inform development and implementation efforts, studies should describe in more detail potentially important factors such as system design, user interface, local context, implementation strategy, and evaluate impact on user satisfaction and workflow, costs, and unintended consequences.</p
The quality case for information technology in healthcare
BACKGROUND: As described in the Institute of Medicine's Crossing the Quality Chasm report, the quality of health care in the U.S. today leaves much to be desired. DISCUSSION: One major opportunity for improving quality relates to increasing the use of information technology, or IT. Health care organizations currently invest less in IT than in any other information-intensive industry, and not surprisingly current systems are relatively primitive, compared with industries such as banking or aviation. Nonetheless, a number of organizations have demonstrated that quality can be substantially improved in a variety of ways if IT use is increased in ways that improve care. Specifically, computerization of processes that are error-prone and computerized decision support may substantially improve both efficiency and quality, as well as dramatically facilitate quality measurement. This report discusses the current levels of IT and quality in health care, how quality improvement and management are currently done, the evidence that more IT might be helpful, a vision of the future, and the barriers to getting there. SUMMARY: This report suggests that there are five key policy domains that need to be addressed: standards, incentives, security and confidentiality, professional involvement, and research, with financial incentives representing the single most important lever
Barriers to implementation of a computerized decision support system for depression: an observational report on lessons learned in "real world" clinical settings
<p>Abstract</p> <p>Background</p> <p>Despite wide promotion, clinical practice guidelines have had limited effect in changing physician behavior. Effective implementation strategies to date have included: multifaceted interventions involving audit and feedback, local consensus processes, marketing; reminder systems, either manual or computerized; and interactive educational meetings. In addition, there is now growing evidence that contextual factors affecting implementation must be addressed such as organizational support (leadership procedures and resources) for the change and strategies to implement and maintain new systems.</p> <p>Methods</p> <p>To examine the feasibility and effectiveness of implementation of a computerized decision support system for depression (CDSS-D) in routine public mental health care in Texas, fifteen study clinicians (thirteen physicians and two advanced nurse practitioners) participated across five sites, accruing over 300 outpatient visits on 168 patients.</p> <p>Results</p> <p>Issues regarding computer literacy and hardware/software requirements were identified as initial barriers. Clinicians also reported concerns about negative impact on workflow and the potential need for duplication during the transition from paper to electronic systems of medical record keeping.</p> <p>Conclusion</p> <p>The following narrative report based on observations obtained during the initial testing and use of a CDSS-D in clinical settings further emphasizes the importance of taking into account organizational factors when planning implementation of evidence-based guidelines or decision support within a system.</p
Effectiveness of electronic guideline-based implementation systems in ambulatory care settings - a systematic review
<p>Abstract</p> <p>Background</p> <p>Electronic guideline-based decision support systems have been suggested to successfully deliver the knowledge embedded in clinical practice guidelines. A number of studies have already shown positive findings for decision support systems such as drug-dosing systems and computer-generated reminder systems for preventive care services.</p> <p>Methods</p> <p>A systematic literature search (1990 to December 2008) of the English literature indexed in the Medline database, Embase, the Cochrane Central Register of Controlled Trials, and CRD (DARE, HTA and NHS EED databases) was conducted to identify evaluation studies of electronic multi-step guideline implementation systems in ambulatory care settings. Important inclusion criterions were the multidimensionality of the guideline (the guideline needed to consist of several aspects or steps) and real-time interaction with the system during consultation. Clinical decision support systems such as one-time reminders for preventive care for which positive findings were shown in earlier reviews were excluded. Two comparisons were considered: electronic multidimensional guidelines versus usual care (comparison one) and electronic multidimensional guidelines versus other guideline implementation methods (comparison two).</p> <p>Results</p> <p>Twenty-seven publications were selected for analysis in this systematic review. Most designs were cluster randomized controlled trials investigating process outcomes more than patient outcomes. With success defined as at least 50% of the outcome variables being significant, none of the studies were successful in improving patient outcomes. Only seven of seventeen studies that investigated process outcomes showed improvements in process of care variables compared with the usual care group (comparison one). No incremental effect of the electronic implementation over the distribution of paper versions of the guideline was found, neither for the patient outcomes nor for the process outcomes (comparison two).</p> <p>Conclusions</p> <p>There is little evidence at the moment for the effectiveness of an increasingly used and commercialised instrument such as electronic multidimensional guidelines. After more than a decade of development of numerous electronic systems, research on the most effective implementation strategy for this kind of guideline-based decision support systems is still lacking. This conclusion implies a considerable risk towards inappropriate investments in ineffective implementation interventions and in suboptimal care.</p
Standards for Scalable Clinical Decision Support: Need, Current and Emerging Standards, Gaps, and Proposal for Progress
Despite their potential to significantly improve health care, advanced clinical decision support (CDS) capabilities are not widely available in the clinical setting. An important reason for this limited availability of CDS capabilities is the application-specific and institution-specific nature of most current CDS implementations. Thus, a critical need for enabling CDS capabilities on a much larger scale is the development and adoption of standards that enable current and emerging CDS resources to be more effectively leveraged across multiple applications and care settings. Standards required for such effective scaling of CDS include (i) standard terminologies and information models to represent and communicate about health care data; (ii) standard approaches to representing clinical knowledge in both human-readable and machine-executable formats; and (iii) standard approaches for leveraging these knowledge resources to provide CDS capabilities across various applications and care settings. A number of standards do exist or are under development to meet these needs. However, many gaps and challenges remain, including the excessive complexity of many standards; the limited availability of easily accessible knowledge resources implemented using standard approaches; and the lack of tooling and other practical resources to enable the efficient adoption of existing standards. Thus, the future development and widespread adoption of current CDS standards will depend critically on the availability of tooling, knowledge bases, and other resources that make the adoption of CDS standards not only the right approach to take, but the cost-effective path to follow given the alternative of using a traditional, ad hoc approach to implementing CDS
- …