58 research outputs found

    The palaeontology and dating of the ‘Weybourne Crag’, an important marker horizon in the Early Pleistocene of the southern North Sea basin

    Get PDF
    In the North Sea basin the marine bivalve Macoma balthica first appears within the Early Pleistocene ‘Weybourne Crag’, which forms an important biostratigraphical datum. Here we review the fossil assemblages from sites of this age, prompted by new discoveries from Sidestrand, Norfolk, UK. The molluscan assemblages from this horizon are dominated by intertidal species with some colder/deeper water taxa and a few temperate non-marine species. A high boreal/low arctic marine environment with reduced salinities is indicated. An extensive assemblage of small mammals dominated by voles includes two species (Mimomys hordijki and Ungaromys dehmi) previously unknown from the British Pleistocene. The assemblage can be assigned to Tesakov's Mammal Biozone MNR1 (=MN17, Middle Villafranchian), which according to current estimates corresponds to a date of ∼2.2-2.1 Ma (MIS 84-79). It matches another assemblage from -61 m to -65 m in the Zuurland-2 borehole in The Netherlands, and is similar to that from the Dutch Tiglian type site at Tegelen, although this has more temperate elements. A late Tiglian age is consistent with the co-occurrence of the marine bivalves Macoma balthica, Mya arenaria and the freshwater gastropod Viviparus glacialis in the Zuurland-2 borehole and in a North Sea borehole (BGS 52-02-472). A Macoma balthica – Mya arenaria Concurrent Range Zone is defined for this assemblage, which can be traced across the North Sea basin. Amino acid dating provides strong independent support for these correlations and indicates that the Baventian cold stage post-dates the Bramertonian (Norwich Crag). It also confirms that Early Pleistocene molluscan assemblages with M. balthica are younger than those without it. The correlation of this marine marker horizon with Mammal Biozone MNR1 provides a secure link between continental and marine sequences during the Early Pleistocene. It also provides a basis for dating events in the pre-glacial fluvial drainage history and linking it to the East European mammal zonation

    Functional Interactions between Retinoblastoma and c-MYC in a Mouse Model of Hepatocellular Carcinoma

    Get PDF
    Inactivation of the RB tumor suppressor and activation of the MYC family of oncogenes are frequent events in a large spectrum of human cancers. Loss of RB function and MYC activation are thought to control both overlapping and distinct cellular processes during cell cycle progression. However, how these two major cancer genes functionally interact during tumorigenesis is still unclear. Here, we sought to test whether loss of RB function would affect cancer development in a mouse model of c-MYC-induced hepatocellular carcinoma (HCC), a deadly cancer type in which RB is frequently inactivated and c-MYC often activated. We found that RB inactivation has minimal effects on the cell cycle, cell death, and differentiation features of liver tumors driven by increased levels of c-MYC. However, combined loss of RB and activation of c-MYC led to an increase in polyploidy in mature hepatocytes before the development of tumors. There was a trend for decreased survival in double mutant animals compared to mice developing c-MYC-induced tumors. Thus, loss of RB function does not provide a proliferative advantage to c-MYC-expressing HCC cells but the RB and c-MYC pathways may cooperate to control the polyploidy of mature hepatocytes

    Time domains of the hypoxic ventilatory response in ectothermic vertebrates

    Get PDF
    Over a decade has passed since Powell et al. (Respir Physiol 112:123–134, 1998) described and defined the time domains of the hypoxic ventilatory response (HVR) in adult mammals. These time domains, however, have yet to receive much attention in other vertebrate groups. The initial, acute HVR of fish, amphibians and reptiles serves to minimize the imbalance between oxygen supply and demand. If the hypoxia is sustained, a suite of secondary adjustments occur giving rise to a more long-term balance (acclimatization) that allows the behaviors of normal life. These secondary responses can change over time as a function of the nature of the stimulus (the pattern and intensity of the hypoxic exposure). To add to the complexity of this process, hypoxia can also lead to metabolic suppression (the hypoxic metabolic response) and the magnitude of this is also time dependent. Unlike the original review of Powell et al. (Respir Physiol 112:123–134, 1998) that only considered the HVR in adult animals, we also consider relevant developmental time points where information is available. Finally, in amphibians and reptiles with incompletely divided hearts the magnitude of the ventilatory response will be modulated by hypoxia-induced changes in intra-cardiac shunting that also improve the match between O2 supply and demand, and these too change in a time-dependent fashion. While the current literature on this topic is reviewed here, it is noted that this area has received little attention. We attempt to redefine time domains in a more ‘holistic’ fashion that better accommodates research on ectotherms. If we are to distinguish between the genetic, developmental and environmental influences underlying the various ventilatory responses to hypoxia, however, we must design future experiments with time domains in mind

    Dynamic end-tidal forcing of carbon dioxide and oxygen during FMRA

    No full text
    Investigations into the blood oxygenation level-dependent (BOLD) functional MRI signal have used respiratory challenges with the aim of probing cerebrovascular physiology. Such challenges have altered the inspired partial pressures of either carbon dioxide or oxygen, typically to a fixed and constant level (fixed inspired challenge (FIC)). The resulting end-tidal gas partial pressures then depend on the subject's metabolism and ventilatory responses. In contrast, dynamic end-tidal forcing (DEF) rapidly and independently sets end-tidal oxygen and carbon dioxide to desired levels by altering the inspired gas partial pressures on a breath-by-breath basis using computer-controlled feedback. This study implements DEF in the MRI environment to map BOLD signal reactivity to CO(2). We performed BOLD (T2(*)) contrast FMRI in four healthy male volunteers, while using DEF to provide a cyclic normocapnic-hypercapnic challenge, with each cycle lasting 4 mins (PET(CO(2)) mean+/-s.d., from 40.9+/-1.8 to 46.4+/-1.6 mm Hg). This was compared with a traditional fixed-inspired (FI(CO(2))=5%) hypercapnic challenge (PET(CO(2)) mean+/-s.d., from 38.2+/-2.1 to 45.6+/-1.4 mm Hg). Dynamic end-tidal forcing achieved the desired target PET(CO(2)) for each subject while maintaining PET(O(2)) constant. As a result of CO(2)-induced increases in ventilation, the FIC showed a greater cyclic fluctuation in PET(O(2)). These were associated with spatially widespread fluctuations in BOLD signal that were eliminated largely by the control of PET(O(2)) during DEF. The DEF system can provide flexible, convenient, and physiologically well-controlled respiratory challenges in the MRI environment for mapping dynamic responses of the cerebrovasculature
    corecore