59 research outputs found

    Simulating Food Web Dynamics along a Gradient: Quantifying Human Influence

    Get PDF
    Realistically parameterized and dynamically simulated food-webs are useful tool to explore the importance of the functional diversity of ecosystems, and in particular relations between the dynamics of species and the whole community. We present a stochastic dynamical food web simulation for the Kelian River (Borneo). The food web was constructed for six different locations, arrayed along a gradient of increasing human perturbation (mostly resulting from gold mining activities) along the river. Along the river, the relative importance of grazers, filterers and shredders decreases with increasing disturbance downstream, while predators become more dominant in governing eco-dynamics. Human activity led to increased turbidity and sedimentation which adversely impacts primary productivity. Since the main difference between the study sites was not the composition of the food webs (structure is quite similar) but the strengths of interactions and the abundance of the trophic groups, a dynamical simulation approach seemed to be useful to better explain human influence. In the pristine river (study site 1), when comparing a structural version of our model with the dynamical model we found that structurally central groups such as omnivores and carnivores were not the most important ones dynamically. Instead, primary consumers such as invertebrate grazers and shredders generated a greater dynamical response. Based on the dynamically most important groups, bottom-up control is replaced by the predominant top-down control regime as distance downstream and human disturbance increased. An important finding, potentially explaining the poor structure to dynamics relationship, is that indirect effects are at least as important as direct ones during the simulations. We suggest that our approach and this simulation framework could serve systems-based conservation efforts. Quantitative indicators on the relative importance of trophic groups and the mechanistic modeling of eco-dynamics could greatly contribute to understanding various aspects of functional diversity

    Selenium increases seed production in Brassica

    No full text
    Selenium (Se) is essential for humans and animals but is not considered to be essential for higher plants. Although researchers have found increases in vegetative growth due to fertiliser Se, there has been no definitive evidence to date of increased reproductive capacity, in terms of seed production and seed viability. The aim of this study was to evaluate seed production and growth responses to a low dose of Se (as sodium selenite, added to solution culture) compared to very low-Se controls in fast-cycling Brassica rapa L. Although there was no change in total biomass, Se treatment was associated with a 43% increase in seed production. The Se-treated Brassica plants had higher total respiratory activity in leaves and flowers, which may have contributed to higher seed production. This study provides additional evidence for a beneficial role for Se in higher plants. © 2008 Springer Science+Business Media B.V.G. H. Lyons, Y. Genc, K. Soole, J. C. R. Stangoulis, F. Liu, R. D. Graha
    • …
    corecore