881 research outputs found

    Controlling the polarisation correlation of photon pairs from a charge-tuneable quantum dot

    Full text link
    Correlation between the rectilinear polarisations of the photons emitted from the biexciton decay in a single quantum dot is investigated in a device which allows the charge-state of the dot to be controlled. Optimising emission from the neutral exciton states maximises the operating efficiency of the biexciton decay. This is important for single dot applications such as a triggered source of entangled photons. As the bias on the device is reduced correlation between the two photons is found to fall dramatically as emission from the negatively charged exciton becomes significant. Lifetime measurements demonstrate that electronic spin-scattering is the likely cause.Comment: 3 figure

    Incubation experiments using nitrogen isotope discrimination to estimate ammonia emission from amended sheep manure treatments.

    Get PDF
    Two 10-day in vitro experiments were conducted to investigate the relationship between nitrogen (N) isotope discrimination (δ15N) and ammonia (NH3) emissions from sheep manure. In Exp. 1, three different manure mixtures were set up: control (C); C mixed with lignite (C+L); and grape marc (GM), with 5, 4 and 5 replications, respectively. For C, urine and faeces were collected from sheep fed a diet of 550 g lucerne hay/kg, 400 g barley grain/kg and 50 g faba bean/kg; for C+L, urine and faeces were collected from sheep fed the C diet and 100 g ground lignite added to each incubation system at the start of the experiment; for GM, urine and faeces were collected from sheep fed a diet consisting of C diet with 200 g/kg of the diet replaced with GM. In Exp. 2, three different urine-faeces mixtures were set up: 2U:1F, 1.4U:1F, and 1U:1F with urine to faeces ratios of 2:1, 1.4:1, and 1:1, respectively, each with 5 replications. Lignite in C+L led to significantly lower cumulative manure-N loss by 81% and 68% in comparison with C and GM groups, respectively (P = 0.001). Cumulative emitted manure NH3-N was lower in C+L than C and GM groups by 35% and 36%, respectively (P = 0.020). Emitted manure NH3-N was higher in 2U:1F compared to 1.4U:1F and 1U:1F by 18% and 26%, respectively (P &lt; 0.001). This confirms the relationship between manure δ15N and cumulative NH3-N loss reported by earlier studies, which may be useful for estimating NH3 losses.</p

    Direct and generative retrieval of autobiographical memories: The roles of visual imagery and executive processes.

    Get PDF
    Two experiments used a dual task methodology to investigate the role of visual imagery and executive resources in the retrieval of specific autobiographical memories. In Experiment 1, dynamic visual noise led to a reduction in the number of specific memories retrieved in response to both high and low imageability cues, but did not affect retrieval times. In Experiment 2, irrelevant pictures reduced the number of specific memories but only in response to low imageability cues. Irrelevant pictures also increased response times to both high and low imageability cues. The findings are in line with previous work suggesting that disrupting executive resources may impair generative, but not direct, retrieval of autobiographical memories. In contrast, visual distractor tasks appear to impair access to specific autobiographical memories via both the direct and generative retrieval routes, thereby highlighting the potential role of visual imagery in both pathways

    Process Monitoring Using Optical Ultrasonic Wave Detection

    Get PDF
    Certain microstructural features of materials, such as grain size in metals, porosity in ceramics, and structural phase compositions, are important for determining mechanical properties. Many of these microstructural features have been characterized by ultrasonic wave propagation measurements, such as wave velocity and attenuation. Real-time monitoring of ultrasonic wave propagation during the processing stage would be valuable for following the evolution of these features. This paper describes the application of laser ultrasonic techniques to the monitoring of ceramic sintering. Prior to this work, ultrasonic wave measurements of the sintering of ceramics have been made only through direct contact with the material with a buffer rod [1,2]. Recently, several advances have been made using lasers for both generation and detection of ultrasonic waves in a totally noncontacting manner for material microstructure evaluation [3–5]. Application of laser ultrasonic techniques now opens the possibility for real-time monitoring of materials in very hostile environments as are encountered during processing [6]
    corecore