315 research outputs found

    Concentration phase diagram of Ba(x)Sr(1-x)TiO3 solid solutions

    Full text link
    Method of derivation of phenomenological thermodynamic potential of solid solutions is proposed in which the interaction of the order parameters of constituents is introduced through the account of elastic strain due to misfit of the lattice parameters of the end-members. The validity of the method is demonstrated for Ba(x)Sr(1-x)TiO3 system being a typical example of ferroelectric solid solution. Its phase diagram is determined using experimental data for the coefficients in the phenomenological potentials of SrTiO3 and BaTiO3. In the phase diagram of the Ba(x)Sr(1-x)TiO3 system for small Ba concentration, there are a tricritical point and two multiphase points one of which is associated with up to 6 possible phases.Comment: 8 pages, 3 figure

    Fluctuations, Higher Order Anharmonicities, and Landau Expansion for Barium Titanate

    Full text link
    Correct phenomenological description of ferroelectric phase transitions in barium titanate requires accounting for eighth-order terms in the free energy expansion, in addition to the conventional sixth-order contributions. Another unusual feature of BaTiO_3 crystal is that the coefficients B_1 and B_2 of the terms P_x^4 and P_x^2*P_y^2 in the Landau expansion depend on the temperature. It is shown that the temperature dependence of B_1 and B_2 may be caused by thermal fluctuations of the polarization, provided the fourth-order anharmonicity is anomalously small, i. e. the nonlinearity of P^4 type and higher-order ones play comparable roles. Non-singular (non-critical) fluctuation contributions to B_1 and B_2 are calculated in the first approximation in sixth-order and eighth-order anharmonic constants. Both contributions increase with the temperature, which is in agreement with available experimental data. Moreover, the theory makes it possible to estimate, without any additional assumptions, the ratio of fluctuation (temperature dependent) contributions to coefficients B_1 and B_2. Theoretical value of B_1/B_2 appears to be close to that given by experiments.Comment: 5 pages, 1 figur

    High frequency polarization switching of a thin ferroelectric film

    Full text link
    We consider both experimentally and analytically the transient oscillatory process that arises when a rapid change in voltage is applied to a BaxSr1−xTiO3Ba_xSr_{1-x}TiO_3 ferroelectric thin film deposited on an Mg0Mg0 substrate. High frequency (≈108rad/s\approx 10^{8} rad/s) polarization oscillations are observed in the ferroelectric sample. These can be understood using a simple field-polarization model. In particular we obtain analytic expressions for the oscillation frequency and the decay time of the polarization fluctuation in terms of the material parameters. These estimations agree well with the experimental results

    Tunability of the dielectric response of epitaxially strained SrTiO3 from first principles

    Get PDF
    The effect of in-plane strain on the nonlinear dielectric properties of SrTiO3 epitaxial thin films is calculated using density-functional theory within the local-density approximation. Motivated by recent experiments, the structure, zone-center phonons, and dielectric properties with and without an external electric field are evaluated for several misfit strains within +-3% of the calculated cubic lattice parameter. In these calculations, the in-plane lattice parameters are fixed, and all remaining structural parameters are permitted to relax. The presence of an external bias is treated approximately by applying a force to each ion proportional to the electric field. After obtaining zero-field ground state structures for various strains, the zone-center phonon frequencies and Born effective charges are computed, yielding the zero-field dielectric response. The dielectric response at finite electric field bias is obtained by computing the field dependence of the structure and polarization using an approximate technique. The results are compared with recent experiments and a previous phenomenological theory. The tunability is found to be strongly dependent on the in-plane lattice parameter, showing markedly different behavior for tensile and compressive strains. Our results are expected to be of use for isolating the role of strain in the tunability of real ultrathin epitaxial films.Comment: 11 pages, with postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/ant_srti/index.htm

    Theory of structural response to macroscopic electric fields in ferroelectric systems

    Full text link
    We have developed and implemented a formalism for computing the structural response of a periodic insulating system to a homogeneous static electric field within density-functional perturbation theory (DFPT). We consider the thermodynamic potentials E(R,eta,e) and F(R,eta,e) whose minimization with respect to the internal structural parameters R and unit cell strain eta yields the equilibrium structure at fixed electric field e and polarization P, respectively. First-order expansion of E(R,eta,e) in e leads to a useful approximation in which R(P) and eta(P) can be obtained by simply minimizing the zero-field internal energy with respect to structural coordinates subject to the constraint of a fixed spontaneous polarization P. To facilitate this minimization, we formulate a modified DFPT scheme such that the computed derivatives of the polarization are consistent with the discretized form of the Berry-phase expression. We then describe the application of this approach to several problems associated with bulk and short-period superlattice structures of ferroelectric materials such as BaTiO3 and PbTiO3. These include the effects of compositionally broken inversion symmetry, the equilibrium structure for high values of polarization, field-induced structural phase transitions, and the lattice contributions to the linear and the non-linear dielectric constants.Comment: 19 pages, with 15 postscript figures embedded. Uses REVTEX4 and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/sai_pol/index.htm

    Nanoscale piezoelectric response across a single antiparallel ferroelectric domain wall

    Full text link
    Surprising asymmetry in the local electromechanical response across a single antiparallel ferroelectric domain wall is reported. Piezoelectric force microscopy is used to investigate both the in-plane and out-of- plane electromechanical signals around domain walls in congruent and near-stoichiometric lithium niobate. The observed asymmetry is shown to have a strong correlation to crystal stoichiometry, suggesting defect-domain wall interactions. A defect-dipole model is proposed. Finite element method is used to simulate the electromechanical processes at the wall and reconstruct the images. For the near-stoichiometric composition, good agreement is found in both form and magnitude. Some discrepancy remains between the experimental and modeling widths of the imaged effects across a wall. This is analyzed from the perspective of possible electrostatic contributions to the imaging process, as well as local changes in the material properties in the vicinity of the wall

    The polarizability model for ferroelectricity in perovskite oxides

    Full text link
    This article reviews the polarizability model and its applications to ferroelectric perovskite oxides. The motivation for the introduction of the model is discussed and nonlinear oxygen ion polarizability effects and their lattice dynamical implementation outlined. While a large part of this work is dedicated to results obtained within the self-consistent-phonon approximation (SPA), also nonlinear solutions of the model are handled which are of interest to the physics of relaxor ferroelectrics, domain wall motions, incommensurate phase transitions. The main emphasis is to compare the results of the model with experimental data and to predict novel phenomena.Comment: 55 pages, 35 figure

    The Structural Phase Transition of the Relaxor Ferroelectric 68%PbMg1/3Nb2/3O3-32%PbTiO3

    Full text link
    Neutron scattering techniques have been used to study the relaxor ferroelectric 0.68PbMg1/3Nb2/3O3-0.32PbTiO3 denoted in this paper as 0.68PMN-0.32PT. On cooling, these relaxor ferroelectrics have a long-range ordered ferroelectric phase and the composition is close to that at which the ferroelectric structure changes from rhombohedral to tetragonal. It was found that above the Burns temperature of about 600K, the transverse optic mode and the transverse acoustic mode are strongly coupled and a model was used to describe this coupling that gave similar parameters to those obtained for the coupling in PMN. Below the Burns temperature additional quasi-elastic scattering was found which increased in intensity as the sample was cooled down to the ferroelectric transition temperature but then decreased in intensity. This behaviour is similar to that found in PMN. This scattering is associated with the dynamic polar nano-regions that occur below the Burns temperature. In addition to this scattering a strictly elastic resolution limited peak was observed that was much weaker than the corresponding peak in pure PMN and which decreased in intensity on cooling below the ferroelectric phase whereas for PMN, which does not have a long-range ordered ferroelectric phase, the intensity of this component increased monotonically as the sample was cooled. The results of our study are compared with the recent measurements of Stock et al. [PRB 73 064107] who studied 0.4PMN-0.6PT. The results are qualitatively consistent with the random field model developed to describe the scattering from PMN
    • …
    corecore