784 research outputs found

    On Deletion in Delaunay Triangulation

    Get PDF
    This paper presents how the space of spheres and shelling may be used to delete a point from a dd-dimensional triangulation efficiently. In dimension two, if k is the degree of the deleted vertex, the complexity is O(k log k), but we notice that this number only applies to low cost operations, while time consuming computations are only done a linear number of times. This algorithm may be viewed as a variation of Heller's algorithm, which is popular in the geographic information system community. Unfortunately, Heller algorithm is false, as explained in this paper.Comment: 15 pages 5 figures. in Proc. 15th Annu. ACM Sympos. Comput. Geom., 181--188, 199

    Inner and Outer Rounding of Boolean Operations on Lattice Polygonal Regions

    Get PDF
    Robustness problems due to the substitution of the exact computation on real numbers by the rounded floating point arithmetic are often an obstacle to obtain practical implementation of geometric algorithms. If the adoption of the --exact computation paradigm--[Yap et Dube] gives a satisfactory solution to this kind of problems for purely combinatorial algorithms, this solution does not allow to solve in practice the case of algorithms that cascade the construction of new geometric objects. In this report, we consider the problem of rounding the intersection of two polygonal regions onto the integer lattice with inclusion properties. Namely, given two polygonal regions A and B having their vertices on the integer lattice, the inner and outer rounding modes construct two polygonal regions with integer vertices which respectively is included and contains the true intersection. We also prove interesting results on the Hausdorff distance, the size and the convexity of these polygonal regions

    Finding an ordinary conic and an ordinary hyperplane

    Get PDF
    Given a finite set of non-collinear points in the plane, there exists a line that passes through exactly two points. Such a line is called an ordinary line. An efficient algorithm for computing such a line was proposed by Mukhopadhyay et al. In this note we extend this result in two directions. We first show how to use this algorithm to compute an ordinary conic, that is, a conic passing through exactly five points, assuming that all the points do not lie on the same conic. Both our proofs of existence and the consequent algorithms are simpler than previous ones. We next show how to compute an ordinary hyperplane in three and higher dimensions.Comment: 7 pages, 2 figure

    Improved Incremental Randomized Delaunay Triangulation

    Get PDF
    We propose a new data structure to compute the Delaunay triangulation of a set of points in the plane. It combines good worst case complexity, fast behavior on real data, and small memory occupation. The location structure is organized into several levels. The lowest level just consists of the triangulation, then each level contains the triangulation of a small sample of the levels below. Point location is done by marching in a triangulation to determine the nearest neighbor of the query at that level, then the march restarts from that neighbor at the level below. Using a small sample (3%) allows a small memory occupation; the march and the use of the nearest neighbor to change levels quickly locate the query.Comment: 19 pages, 7 figures Proc. 14th Annu. ACM Sympos. Comput. Geom., 106--115, 199

    Further Results on Arithmetic Filters for Geometric Predicates

    Get PDF
    An efficient technique to solve precision problems consists in using exact computations. For geometric predicates, using systematically expensive exact computations can be avoided by the use of filters. The predicate is first evaluated using rounding computations, and an error estimation gives a certificate of the validity of the result. In this note, we studies the statistical efficiency of filters for cosphericity predicate with an assumption of regular distribution of the points. We prove that the expected value of the polynomial corresponding to the in sphere test is greater than epsilon with probability O(epsilon log 1/epsilon) improving the results of a previous paper by the same authors.Comment: 7 pages 2 figures presented at the 15th European Workshop Comput. Geom., 113--116, 1999 improve previous results (in other paper

    A Probabilistic Analysis of the Power of Arithmetic Filters

    Get PDF
    The assumption of real-number arithmetic, which is at the basis of conventional geometric algorithms, has been seriously challenged in recent years, since digital computers do not exhibit such capability. A geometric predicate usually consists of evaluating the sign of some algebraic expression. In most cases, rounded computations yield a reliable result, but sometimes rounded arithmetic introduces errors which may invalidate the algorithms. The rounded arithmetic may produce an incorrect result only if the exact absolute value of the algebraic expression is smaller than some (small) varepsilon, which represents the largest error that may arise in the evaluation of the expression. The threshold varepsilon depends on the structure of the expression and on the adopted computer arithmetic, assuming that the input operands are error-free. A pair (arithmetic engine,threshold) is an "arithmetic filter". In this paper we develop a general technique for assessing the efficacy of an arithmetic filter. The analysis consists of evaluating both the threshold and the probability of failure of the filter. To exemplify the approach, under the assumption that the input points be chosen randomly in a unit ball or unit cube with uniform density, we analyze the two important predicates "which-side" and "insphere". We show that the probability that the absolute values of the corresponding determinants be no larger than some positive value V, with emphasis on small V, is Theta(V) for the which-side predicate, while for the insphere predicate it is Theta(V^(2/3)) in dimension 1, O(sqrt(V)) in dimension 2, and O(sqrt(V) ln(1/V)) in higher dimensions. Constants are small, and are given in the paper.Comment: 22 pages 7 figures Results for in sphere test inproved in cs.CG/990702
    • …
    corecore