18 research outputs found

    First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary-Black-hole Merger GW170814

    Get PDF
    We present a multi-messenger measurement of the Hubble constant H 0 using the binary–black-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES). The luminosity distance is obtained from the gravitational wave signal detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo Collaboration (LVC) on 2017 August 14, and the redshift information is provided by the DES Year 3 data. Black hole mergers such as GW170814 are expected to lack bright electromagnetic emission to uniquely identify their host galaxies and build an object-by-object Hubble diagram. However, they are suitable for a statistical measurement, provided that a galaxy catalog of adequate depth and redshift completion is available. Here we present the first Hubble parameter measurement using a black hole merger. Our analysis results in H0=75−32+40 km s−1 Mpc−1{H}_{0}={75}_{-32}^{+40}\,\mathrm{km}\,{{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1}, which is consistent with both SN Ia and cosmic microwave background measurements of the Hubble constant. The quoted 68% credible region comprises 60% of the uniform prior range [20, 140] km s−1 Mpc−1, and it depends on the assumed prior range. If we take a broader prior of [10, 220] km s−1 Mpc−1, we find {H}_{0 {78}_{-24}^{+96}\,\mathrm{km}\,{{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1} (57% of the prior range). Although a weak constraint on the Hubble constant from a single event is expected using the dark siren method, a multifold increase in the LVC event rate is anticipated in the coming years and combinations of many sirens will lead to improved constraints on H 0

    Paleoproterozoic (~1.88Ga) felsic volcanism of the Iricoumé Group in the Pitinga Mining District area, Amazonian Craton, Brazil: insights in ancient volcanic processes from field and petrologic data

    Get PDF
    The IricoumĂ© Group correspond to the most expressive Paleoproterozoic volcanism in the Guyana Shield, Amazonian craton. The volcanics are coeval with Mapuera granitoids, and belong to the UatumĂŁ magmatism. They have U-Pb ages around 1880 Ma, and geochemical signatures of &#945;-type magmas. IricoumĂ© volcanics consist of porphyritic trachyte to rhyolite, associated to crystal-rich ignimbrites and co-ignimbritic fall tuffs and surges. The amount and morphology of phenocrysts can be useful to distinguish lava (flow and dome) from hypabyssal units. The morphology of ignimbrite crystals allows the distinction between effusive units and ignimbrite, when pyroclasts are obliterated. Co-ignimbritic tuffs are massive, and some show stratifications that suggest deposition by current traction flow. Zircon and apatite saturation temperatures vary from 799°C to 980°C, are in agreement with most temperatures of &#945;-type melts and can be interpreted as minimum liquidus temperature. The viscosities estimation for rhyolitic and trachytic compositions yield values close to experimentally determined melts, and show a typical exponential decay with water addition. The emplacement of IricoumĂ© volcanics and part of Mapuera granitoids was controlled by ring-faults in an intracratonic environment. A genesis related to the caldera complex setting can be assumed for the IricoumĂ©-Mapuera volcano-plutonic association in the Pitinga Mining District.<br>O Grupo IricoumĂ© corresponde ao mais expressivo vulcanismo PaleoproterozĂłico do Escudo das Guianas, craton AmazĂŽnico. As rochas vulcĂąnicas sĂŁo coexistentes com os granitĂłides Mapuera, e pertencem ao magmatismo UatumĂŁ. Possuem idades U-Pb em torno 1888 Ma, e assinaturas geoquĂ­micas de magmas tipo-A. As vulcĂąnicas do IricoumĂ© consistem de traquitos a riolitos porfirĂ­ticos, associados a ignimbritos ricos em cristal e tufos co-ignimbrĂ­ticos de queda e surge. A quantidade e a morfologia dos fenocristais podem ser utilizadas para distinguir lava (fluxo e domo) de unidades hipabissais. A morfologia dos cristais em ignimbritos permite a distinção entre unidades efusivas e ignimbritos, quando os piroclastos estĂŁo obliterados. Tufos co-ignimbrĂ­ticos sĂŁo maciços e alguns exibem estratificaçÔes que sugerem deposição por correntes de tração. Temperaturas de cristalização de zircĂŁo e apatita variam de 799°C a 980°C, sĂŁo compatĂ­veis com temperaturas de lĂ­quidos tipo-A e podem ser interpretadas como temperatura liquidus mĂ­nima. Estimativas de viscosidade para composiçÔes riolĂ­ticas e traquĂ­ticas fornecem valores prĂłximos a de lĂ­quidos determinadas experimentalmente e ilustram curvas tĂ­picas de decaimento exponencial, com a adição de ĂĄgua. O posicionamento das vulcĂąnicas IricoumĂ© e de parte dos granitĂłides Mapuera foi controlado por falhas anelares em ambiente intracratĂŽnico. Uma gĂȘnese relacionada a ambiente de complexo de caldeiras pode ser assumida para a associação vulcano-plutĂŽnica IricoumĂ©-Mapuera no Distrito Mineiro de Pitinga
    corecore