70 research outputs found

    Conditions for the differentiation of melanocyte-precursor cells from human cord blood-derived mesenchymal stem cells

    Get PDF
    The loss of skin pigmentation can induce compromised cutaneous immunity, which can result in conditions such as vitiligo. In this study, we evaluated various agents that are able to induce the differentiation of stem cells into melanocytes. We found that a mixture of forskolin (FK), stem cell factor (SCF) and endothelin-3 (EDN-3) induced melanocyte-like morphology in human cord blood-derived mesenchymal stem cells (CB-MSCs). In addition, significant expression of microphthalmia-associated transcription factor-M and tyrosinase-related protein-1 genes was observed. These results suggest that a mixture of FK, SCF and EDN-3 induces the differentiation of melanocyte-precursor cells (MPCs) from CB-MSCs.Keywords: mesenchymal stem cells, melanocyte-precursor cells, forskolin, microphthalmia-associated transcription factor-M, tyrosinase-related protein-1African Journal of Biotechnology Vol. 9(36), pp. 5975-5977, 6 September, 201

    Empetrum nigrum

    Get PDF
    This study focused on the protective actions of Empetrum nigrum against ultraviolet B (UVB) radiation in human HaCaT keratinocytes. An ethyl acetate extract of E. nigrum (ENE) increased cell viability decreased by exposure to UVB rays. ENE also absorbed UVB radiation and scavenged UVB-induced intracellular reactive oxygen species (ROS) in HaCaT keratinocytes. In addition, ENE shielded HaCaT keratinocytes from damage to cellular components (e.g., peroxidation of lipids, modification of proteins, and breakage of DNA strands) following UVB irradiation. Furthermore, ENE protected against UVB-induced apoptotic cell death, as determined by a reduction in the numbers of apoptotic bodies and sub-G1 hypodiploid cells, as well as by the recovery of mitochondrial membrane potential. The results of the current study therefore suggest that ENE safeguards human keratinocytes against UVB-induced cellular damage via the absorption of UVB ray and scavenging of UVB-generated ROS

    Gevab: a prototype genome variation analysis browsing server

    Get PDF
    Background: The first Korean individual diploid genome sequence data (KOREF) was publicized in December 2008. Results: A Korean genome variation analysis and browsing server (Gevab) was constructed as a database and web server for the exploration and downloading of Korean personal genome(s). Information in the Gevab includes SNPs, short indels, and structural variation (SV) and comparison analysis between the NCBI human reference and the Korean genome(s). The user can find information on assembled consensus sequences, sequenced short reads, genetic variations, and relationships between genotype and phenotypes. Conclusion: This server is openly and publicly available online at http://koreagenome.org/en/ or directly http://gevab.orgclose2

    Comprehensive genomic profiles of small cell lung cancer

    Get PDF
    We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Δex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer

    Comprehensive genomic profiles of small cell lung cancer

    Get PDF
    We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Dex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer

    Inhibitory Effects of Prunella vulgaris L. Extract on 11β-HSD1 in Human Skin Cells

    No full text
    Glucocorticoids are a risk factor for age-induced skin structure and function defects, and the glucocorticoid-activating enzyme, 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1), represents a promising therapeutic target. Prunella vulgaris L. (PV) is a perennial and an edible herbaceous plant normally cultivated in Asia and Europe. A recent study demonstrated a broad range of biological activities of PV including immune modulatory, antiviral, antiallergic, anti-inflammatory, antioxidant, and antidiabetic. However, little is known about the inhibitory effect of PV on 11β-HSD1. In this study, we investigated the inhibitory effect of Prunella vulgaris L. extract (PVE) and the underlying mechanism of 11β-HSD11 inhibition. Consistent with these results, cortisol levels were also reduced by PVE in vitro. The cortisone-induced translocation of glucocorticoids receptor (GR) was also attenuated. In addition, PVE inhibited a cortisone-mediated decrease in collagen content in skin. Collectively, these results suggest the beneficial effects of PVE in maintaining skin integrity

    Inhibitory Effects of Prunella vulgaris

    No full text

    PER, a Circadian Clock Component, Mediates the Suppression of MMP-1 Expression in HaCaT Keratinocytes by cAMP

    No full text
    Skin circadian clock system responds to daily changes, thereby regulating skin functions. Exposure of the skin to UV irradiation induces the expression of matrix metalloproteinase-1 (MMP-1) and causes DNA damage. It has been reported both DNA repair and DNA replication are regulated by the circadian clock in mouse skin. However, the molecular link between circadian clock and MMP-1 has little been investigated. We found PERIOD protein, a morning clock component, represses the expression of MMP-1 in human keratinocytes by using a PER-knockdown strategy. Treatment with siPer3 alleviated the suppression of MMP-1 expression induced by forskolin. Results revealed PER3 suppresses the expression of MMP-1 via cAMP signaling pathway. Additionally, we screened for an activator of PER that could repress the expression of MMP-1 using HaCaT cell line containing PER promoter-luciferase reporter gene. Results showed Lespedeza capitate extract (LCE) increased PER promoter activity. LCE inhibited the expression of MMP-1 and its effect of LCE was abolished in knockdown of PER2 or PER3, demonstrating LCE can repress the expression of MMP-1 through PER. Since circadian clock component PER can regulate MMP-1 expression, it might be a new molecular mechanism to develop therapeutics to alleviate skin aging and skin cancer

    Anti-Skin-Aging Activity of a Standardized Extract from Panax ginseng Leaves In Vitro and In Human Volunteer

    No full text
    Ginseng leaves contain high saponin composition and content, but are used less often than the root part. To develop a use for the leaves that exploits their properties, we studied ginseng leaves as the raw material of anti-aging cosmetics. This study highlights an assessment of the cellular factivity and clinical efficacy of ginseng leaf extract, providing necessary information relevant to the development of new cosmetic products. Panax ginseng leaf purified extracts (PGLE) were shown to have high contents of Rb3 and Rb2. Rb3, the major chemical components of PGLE, promoted collagen synthesis though the activation of transforming growth factor-β (TGF-β) in human skin fibroblast cells. In addition, the possibility of PGLE as an anti-skin-aging agent has also been clinically validated. Our analysis of the crow’s feet wrinkle showed that there was a decrease in the depth of deep furrows in the region of interest (RI) treated with PGLE lotion over an eight-week period. Based on these results, we suggest the possibility that PGLE, having high levels of Rb3, be considered as an attractive, wrinkle-reducing candidate for topical application

    Anti-Thermal Skin Aging Activity of Aqueous Extracts Derived from Apple Mint (Mentha suaveolens Ehrh.) in Human Dermal Fibroblasts

    No full text
    Thermal skin aging refers to skin aging induced by heat shock treatment. Apple mint (Mentha suaveolens Ehrh.) has been used as a folk medicine to treat various diseases. However, the activity of apple mint in thermal skin aging has yet to be investigated. In this study, we conducted various biological assays to demonstrate the anti-thermal skin aging activity of extracts of apple mint leaves (ALE). As a result, ALE showed significant antioxidant activities and inhibited the production of reactive oxygen species (ROS), matrix metalloproteinases (MMPs), and interleukin-8 (IL-8) as well as suppressed mitogen-activated proteins kinases (MAPKs) such as extracellular signal regulated kinases (ERK), c-Jun N terminal kinases (JNK), and p38 MAPK triggered by heat shock treatment in human dermal fibroblasts (HDFs). Consequently, ALE could be used as attractive cosmetic materials with anti-thermal skin aging activity
    corecore