808 research outputs found
Use of indocyanine green near-infrared lymphography to detect sentinel lymph nodes in a dog with a malignant insulinoma: a case report
Malignant insulinoma is the most common type of neuroendocrine tumor found in the pancreas of dogs. Canine insulinoma displays malignant behavior with a high rate of metastasis. The most common sites of metastases are the draining lymph nodes, which are also the primary location sites for the recurrence of functional disease. However, identifying metastatic nodes can often be complicated, as the pancreas is drained by numerous lymphatic centers, and clinical enlargement or structural changes may not always be present in metastatic nodes. Additionally, unaltered nodes are frequently small (a few millimeters) and can be hard to distinguish from the surrounding tissues. Therefore, lymphadenectomy is generally recommended for affected dogs. Unlike in human medicine, there are currently no established strategies for lymph node resection in dogs with malignant insulinoma. This report presents a technique for identifying and removing sentinel nodes using indocyanine green and near-infrared lymphography (NIRFL) during surgery. A total of six sentinel nodes were detected and resected with this method. This technique could provide a more structured approach for lymph node resection in affected dogs and potentially in humans in the future. However, its therapeutic benefits must be evaluated in a larger cohort of cases
Negative capacitance in organic semiconductor devices: bipolar injection and charge recombination mechanism
We report negative capacitance at low frequencies in organic semiconductor
based diodes and show that it appears only under bipolar injection conditions.
We account quantitatively for this phenomenon by the recombination current due
to electron-hole annihilation. Simple addition of the recombination current to
the well established model of space charge limited current in the presence of
traps, yields excellent fits to the experimentally measured admittance data.
The dependence of the extracted characteristic recombination time on the bias
voltage is indicative of a recombination process which is mediated by localized
traps.Comment: 3 pages, 3 figures, accepted for publication in Applied Physics
Letter
Pressure-Induced Rotational Symmetry Breaking in URuSi
Phase transitions and symmetry are intimately linked. Melting of ice, for
example, restores translation invariance. The mysterious hidden order (HO)
phase of URuSi has, despite relentless research efforts, kept its
symmetry breaking element intangible. Here we present a high-resolution x-ray
diffraction study of the URuSi crystal structure as a function of
hydrostatic pressure. Below a critical pressure threshold kbar,
no tetragonal lattice symmetry breaking is observed even below the HO
transition K. For , however, a pressure-induced rotational
symmetry breaking is identified with an onset temperatures K.
The emergence of an orthorhombic phase is found and discussed in terms of an
electronic nematic order that appears unrelated to the HO, but with possible
relevance for the pressure-induced antiferromagnetic (AF) phase. Existing
theories describe the HO and AF phases through an adiabatic continuity of a
complex order parameter. Since none of these theories predicts a
pressure-induced nematic order, our finding adds an additional symmetry
breaking element to this long-standing problem.Comment: 6 pages, 4 figures and supplemental material
Long-term palliation of right-sided congestive heart failure after stenting a recurrent cor triatriatum dexter in a 10½-year-old pug.
A 10½-year-old, male neutered, pug presented with increasing ascites over two months. Echocardiography revealed cor triatriatum dexter with no concurrent cardiovascular anomalies, subsequently confirmed by computed tomography angiography. Balloon dilation of the perforated intra-atrial membrane under fluoroscopic guidance resulted in the transient resolution of all clinical abnormalities, but six months later stenosis and ascites recurred. After repeated balloon dilation, a stent was placed across the membrane. The dog remains asymptomatic fourteen months after the second procedure. One noteworthy feature of this case is the onset of congestive heart failure due to a congenital defect only at more than 10 years of age
Presence of Probst Bundles Indicate White Matter Remodeling in a Dog With Corpus Callosum Hypoplasia and Dysplasia
Corpus callosum abnormalities (CCA) rarely occur in dogs and are related to hypo/adypsic hypernatremia and seizures. Hypoplasia and dysplasia of the corpus callosum (CC) with concomitant lobar holoprosencephaly is the most common variant. It is currently uncertain using conventional MRI if canine CCA reflects the failure of commissural fibers to develop or the failure of the commissural fibers to cross hemispheres. Diffusion tensor imaging was performed in a 4-year-old Staffordshire mix breed dog with CCA and an age-matched healthy Beagle. In comparison to the control dog, CC tractography of the affected dog depicted only axonal tracts corresponding to the temporal CC fibers. The cingulum bundles appeared supernumerary with unorganized architecture, extending into the ipsilateral cerebral cortex, and therefore strongly suggested homology to Probst bundles reported in humans with CCA. The presence of Probst bundles in canine CCA could represent compensatory neuroplasticity-mediated networking and may contribute the fair prognosis reported in affected dogs
Resting state networks of the canine brain under sevoflurane anaesthesia
Resting-state functional Magnetic Resonance Imaging (rs-fMRI) has become an established technique in humans and reliably determines several resting state networks (RSNs) simultaneously. Limited data exist about RSN in dogs. The aim of this study was to investigate the RSNs in 10 healthy beagle dogs using a 3 tesla MRI scanner and subsequently perform group-level independent component analysis (ICA) to identify functionally connected brain networks. Rs-fMRI sequences were performed under steady state sevoflurane inhalation anaesthesia. Anaesthetic depth was titrated to the minimum level needed for immobilisation and mechanical ventilation of the patient. This required a sevoflurane MAC between 0.8 to 1.2. Group-level ICA dimensionality of 20 components revealed distributed sensory, motor and higher-order networks in the dogs’ brain. We identified in total 7 RSNs (default mode, primary and higher order visual, auditory, two putative motor-somatosensory and one putative somatosensory), which are common to other mammals including humans. Identified RSN are remarkably similar to those identified in awake dogs. This study proves the feasibility of rs-fMRI in anesthetized dogs and describes several RSNs, which may set the basis for investigating pathophysiological characteristics of various canine brain diseases
Triplet Exciton Generation in Bulk-Heterojunction Solar Cells based on Endohedral Fullerenes
Organic bulk-heterojunctions (BHJ) and solar cells containing the trimetallic
nitride endohedral fullerene 1-[3-(2-ethyl)hexoxy
carbonyl]propyl-1-phenyl-Lu3N@C80 (Lu3N@C80-PCBEH) show an open circuit voltage
(VOC) 0.3 V higher than similar devices with [6,6]-phenyl-C[61]-butyric acid
methyl ester (PC61BM). To fully exploit the potential of this acceptor molecule
with respect to the power conversion efficiency (PCE) of solar cells, the short
circuit current (JSC) should be improved to become competitive with the state
of the art solar cells. Here, we address factors influencing the JSC in blends
containing the high voltage absorber Lu3N@C80-PCBEH in view of both
photogeneration but also transport and extraction of charge carriers. We apply
optical, charge carrier extraction, morphology, and spin-sensitive techniques.
In blends containing Lu3N@C80-PCBEH, we found 2 times weaker photoluminescence
quenching, remainders of interchain excitons, and, most remarkably, triplet
excitons formed on the polymer chain, which were absent in the reference
P3HT:PC61BM blends. We show that electron back transfer to the triplet state
along with the lower exciton dissociation yield due to intramolecular charge
transfer in Lu3N@C80-PCBEH are responsible for the reduced photocurrent
Synthesis, radiolabelling and in vitro and in vivo evaluation of a novel fluorinated ABP688 derivative for the PET imaging of metabotropic glutamate receptor subtype 5
(E)-3-(Pyridin-2-ylethynyl)cyclohex-2-enone O-(2-(3-18F-fluoropropoxy)ethyl) oxime ([18F]-PSS223) was evaluated
in vitro and in vivo to establish its potential as a PET tracer for imaging metabotropic glutamate receptor subtype
5 (mGluR5). [18F]-PSS223 was obtained in 20% decay corrected radiochemical yield whereas the non-radioactive
PSS223 was accomplished in 70% chemical yield in a SN2 reaction of common intermediate mesylate 8 with potassium
fluoride. The in vitro binding affinity of [18F]-PSS223 was measured directly in a Scatchard assay to give Kd =
3.34 ± 2.05 nM. [18F]-PSS223 was stable in PBS and rat plasma but was significantly metabolized by rat liver microsomal
enzymes, but to a lesser extent by human liver microsomes. Within 60 min, 90% and 20% of [18F]-PSS223 was
metabolized by rat and human microsome enzymes, respectively. In vitro autoradiography on horizontal rat brain
slices showed heterogeneous distribution of [18F]-PSS223 with the highest accumulation in brain regions where
mGluR5 is highly expressed (hippocampus, striatum and cortex). Autoradiography in vitro under blockade conditions
with ABP688 confirmed the high specificity of [18F]-PSS223 for mGluR5. Under the same blocking conditions but using
the mGluR1 antagonist, JNJ16259685, no blockade was observed demonstrating the selectivity of [18F]-PSS223
for mGluR5 over mGluR1. Despite favourable in vitro properties of [18F]-PSS223, a clear-cut visualization of mGluR5-
rich brain regions in vivo in rats was not possible mainly due to a fast clearance from the brain and low metabolic
stability of [18F]-PSS223
CD69 is a TGF-β/1α,25-dihydroxyvitamin D3 target gene in monocytes
CD69 is a transmembrane lectin that can be expressed on most hematopoietic cells. In monocytes, it has been functionally linked to the 5-lipoxygenase pathway in which the leukotrienes, a class of highly potent inflammatory mediators, are produced. However, regarding CD69 gene expression and its regulatory mechanisms in monocytes, only scarce data are available. Here, we report that CD69 mRNA expression, analogous to that of 5-lipoxygenase, is induced by the physiologic stimuli transforming growth factor-β (TGF-β) and 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) in monocytic cells. Comparison with T- and B-cell lines showed that the effect was specific for monocytes. CD69 expression levels were increased in a concentration-dependent manner, and kinetic analysis revealed a rapid onset of mRNA expression, indicating that CD69 is a primary TGF-β/1α,25(OH)2D3 target gene. PCR analysis of different regions of the CD69 mRNA revealed that de novo transcription was initiated and proximal and distal parts were induced concomitantly. In common with 5-lipoxygenase, no activation of 0.7 kb or ~2.3 kb promoter fragments by TGF-β and 1α,25(OH)2D3 could be observed in transient reporter assays for CD69. Analysis of mRNA stability using a transcription inhibitor and a 3′UTR reporter construct showed that TGF-β and 1α,25(OH)2D3 do not influence CD69 mRNA stability. Functional knockdown of Smad3 clearly demonstrated that upregulation of CD69 mRNA, in contrast to 5-LO, depends on Smad3. Comparative studies with different inhibitors for mitogen activated protein kinases (MAPKs) revealed that MAPK signalling is involved in CD69 gene regulation, whereas 5-lipoxygenase gene expression was only partly affected. Mechanistically, we found evidence that CD69 gene upregulation depends on TAK1-mediated p38 activation. In summary, our data indicate that CD69 gene expression, conforming with 5-lipoxygenase, is regulated monocyte-specifically by the physiologic stimuli TGF-β and 1α,25(OH)2D3 on mRNA level, although different mechanisms account for the upregulation of each gene
HDAC-mediated control of ERK- and PI3K-dependent TGF-β-induced extracellular matrix-regulating genes
Histone deacetylases (HDACs) regulate the acetylation of histones in the control of gene expression. Many non-histone proteins are also targeted for acetylation, including TGF-ß signalling pathway components such as Smad2, Smad3 and Smad7. Our studies in mouse C3H10T1/2 fibroblasts suggested that a number of TGF-ß-induced genes that regulate matrix turnover are selectively regulated by HDACs. Blockade of HDAC activity with trichostatin A (TSA) abrogated the induction of a disintegrin and metalloproteinase 12 (Adam12) and tissue inhibitor of metalloproteinases-1 (Timp-1) genes by TGF-ß, whereas plasminogen activator inhibitor-1 (Pai-1) expression was unaffected. Analysis of the activation of cell signalling pathways demonstrated that TGF-ß induced robust ERK and PI3K activation with delayed kinetics compared to the phosphorylation of Smads. The TGF-ß induction of Adam12 and Timp-1 was dependent on such non-Smad signalling pathways and, importantly, HDAC inhibitors completely blocked their activation without affecting Smad signalling. Analysis of TGF-ß-induced Adam12 and Timp-1 expression and ERK/PI3K signalling in the presence of semi-selective HDAC inhibitors valproic acid, MS-275 and apicidin implicated a role for class I HDACs. Furthermore, depletion of HDAC3 by RNA interference significantly down-regulated TGF-ß-induced Adam12 and Timp-1 expression without modulating Pai-1 expression. Correlating with the effect of HDAC inhibitors, depletion of HDAC3 also blocked the activation of ERK and PI3K by TGF-ß. Collectively, these data confirm that HDACs, and in particular HDAC3, are required for activation of the ERK and PI3K signalling pathways by TGF-ß and for the subsequent gene induction dependent on these signalling pathways
- …