280 research outputs found

    Cognitive Evaluation of Bupropion Sustained Release in Heavy Tobacco Smokers Using Event-Related Potentials

    Get PDF
    Objective. The aim of this study was to investigate the effects of bupropion sustained release (SR) on cognitive function, evaluated by event-related potentials (ERPs), in heavy tobacco smokers

    Measurement of cognitive dynamics during video watching through event-related potentials (ERPs) and oscillations (EROs)

    Get PDF
    Event-related potentials (ERPs) and oscillations (EROs) are reliable measures of cognition, but they require time-locked electroencephalographic (EEG) data to repetitive triggers that are not available in continuous sensory input streams. However, such real-life-like stimulation by videos or virtual-reality environments may serve as powerful means of creating specific cognitive or affective states and help to investigate dysfunctions in psychiatric and neurological disorders more efficiently. This study aims to develop a method to generate ERPs and EROs during watching videos. Repeated luminance changes were introduced on short video segments, while EEGs of 10 subjects were recorded. The ERP/EROs time-locked to these distortions were analyzed in time and time-frequency domains and tested for their cognitive significance through a long term memory test that included frames from the watched videos. For each subject, ERPs and EROs corresponding to video segments of recalled images with 25% shortest and 25% longest reaction times were compared. ERPs produced by transient luminance changes displayed statistically significant fluctuations both in time and time-frequency domains. Statistical analyses showed that a positivity around 450 ms, a negativity around 500 ms and delta and theta EROs correlated with memory performance. Few studies mixed video streams with simultaneous ERP/ERO experiments with discrete task-relevant or passively presented auditory or somatosensory stimuli, while the present study, by obtaining ERPs and EROs to task-irrelevant events in the same sensory modality as that of the continuous sensory input, produces minimal interference with the main focus of attention on the video stream

    Decreased Stuttering while Walking: Speech and fMRI Findings

    Get PDF
    We present an adult case with severe persistent developmental stuttering (PDS) that improved dramatically with simultaneous lower limb movements (LMs). During speaking with simultaneous lower limb movement (SLM), her stuttering severity was considerably reduced. Using functional magnetic resonance imaging (fMRI), we investigated the neural basis of speech fluency during speaking with and without simultaneous LM. Bilateral (predominantly right) peri-rolandic cortices, supplementary motor areas (SMA), right fusiform gyrus (FFG), and left frontal gyrus were activated in the SLM compared to the ‘speaking only' (S) and LM. There might be a subtype of PDS that benefits from rhythmic LMs to improve the speech fluency. Locomotor and respiratory coupling might temporarily induce cortical timing networks and, also induce activation, predominantly in the right hemisphere with a potential pacemaker effect. Further investigation in larger groups is required to elucidate whether rhythmic simultaneous LMs improve stuttering

    ENIGMA-anxiety working group : Rationale for and organization of large-scale neuroimaging studies of anxiety disorders

    Get PDF
    Altres ajuts: Anxiety Disorders Research Network European College of Neuropsychopharmacology; Claude Leon Postdoctoral Fellowship; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, 44541416-TRR58); EU7th Frame Work Marie Curie Actions International Staff Exchange Scheme grant 'European and South African Research Network in Anxiety Disorders' (EUSARNAD); Geestkracht programme of the Netherlands Organization for Health Research and Development (ZonMw, 10-000-1002); Intramural Research Training Award (IRTA) program within the National Institute of Mental Health under the Intramural Research Program (NIMH-IRP, MH002781); National Institute of Mental Health under the Intramural Research Program (NIMH-IRP, ZIA-MH-002782); SA Medical Research Council; U.S. National Institutes of Health grants (P01 AG026572, P01 AG055367, P41 EB015922, R01 AG060610, R56 AG058854, RF1 AG051710, U54 EB020403).Anxiety disorders are highly prevalent and disabling but seem particularly tractable to investigation with translational neuroscience methodologies. Neuroimaging has informed our understanding of the neurobiology of anxiety disorders, but research has been limited by small sample sizes and low statistical power, as well as heterogenous imaging methodology. The ENIGMA-Anxiety Working Group has brought together researchers from around the world, in a harmonized and coordinated effort to address these challenges and generate more robust and reproducible findings. This paper elaborates on the concepts and methods informing the work of the working group to date, and describes the initial approach of the four subgroups studying generalized anxiety disorder, panic disorder, social anxiety disorder, and specific phobia. At present, the ENIGMA-Anxiety database contains information about more than 100 unique samples, from 16 countries and 59 institutes. Future directions include examining additional imaging modalities, integrating imaging and genetic data, and collaborating with other ENIGMA working groups. The ENIGMA consortium creates synergy at the intersection of global mental health and clinical neuroscience, and the ENIGMA-Anxiety Working Group extends the promise of this approach to neuroimaging research on anxiety disorders

    ESTIMATION OF EVENT-RELATED POTENTIALS (ERP) BY EXTENDED AUTOCORRELATION METHOD

    No full text

    Decomposition of event-related brain potentials into multiple functional components using wavelet transform

    No full text
    Event related brain potential (ERP) waveforms consist of several components extending in time, frequency and topographical space, Therefore, an efficient processing of data which involves the time, frequency and space features of the signal, may facilitate understanding the plausible connections among the functions, the anatomical structures and neurophysiological mechanisms of the brain. Wavelet transform (WT) is a powerful signal processing tool for extracting the ERP components occurring at different time and frequency spots. A technical explanation of WT in ERP processing and its four distinct applications are presented here. The first two applications aim to identify and localize the functional oddball ERP components in terms of certain wavelet coefficients in delta, theta and alpha bands in a topographical recording. The third application performs a similar characterization that involves a three stimulus paradigm. The fourth application is a single sweep ERP processing to detect the P300 in single trials. The last case is an extension of ERP component identification by combining the WT with a source localization technique. The aim is to localize the time-frequency components in three dimensional brain structure instead of the scalp surface. The time-frequency analysis using WT helps isolate and describe sequential and/or overlapping functional processes during ERP generation, and provides a possibility for studying these cognitive processes and following their dynamics in single trials during an experimental session

    MODELING OF EVOKED-POTENTIALS AS DECAYING SINUSOIDAL OSCILLATIONS BY PRONY-METHOD

    No full text
    corecore