191 research outputs found

    Toxin Variability Estimations of 68 Alexandrium ostenfeldii (Dinophyceae) Strains from The Netherlands Reveal a Novel Abundant Gymnodimine

    Get PDF
    Alexandrium ostenfeldii is a toxic dinoflagellate that has recently bloomed in Ouwerkerkse Kreek, The Netherlands, and which is able to cause a serious threat to shellfish consumers and aquacultures. We used a large set of 68 strains to the aim of fully characterizing the toxin profiles of the Dutch A. ostenfeldii in consideration of recent reports of novel toxins. Alexandrium ostenfeldii is known as a causative species of paralytic shellfish poisoning, and consistently in the Dutch population we determined the presence of several paralytic shellfish toxins (PST) including saxitoxin (STX), GTX2/3 (gonyautoxins), B1 and C1/C2. We also examined the production of spiroimine toxins by the Dutch A. ostenfeldii strains. An extensive liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed a high intraspecific variability of spirolides (SPX) and gymnodimines (GYM). Spirolides included 13-desMethyl-spirolide C generally as the major compound and several other mostly unknown SPX-like compounds that were detected and characterized. Besides spirolides, the presence of gymnodimine A and 12-Methyl-gymnodimine A was confirmed, together with two new gymnodimines. One of these was tentatively identified as an analogue of gymnodimine D and was the most abundant gymnodimine (calculated cell quota up to 274 pg/ cell, expressed as GYM A equivalents). Our multi-clonal approach adds new analogues to the increasing number of compounds in these toxin classes and revealed a high strain variability in cell quota and in toxin profile of toxic compounds within a single population

    Toxin Variability Estimations of 68 Alexandrium ostenfeldii (Dinophyceae) Strains from The Netherlands Reveal a Novel Abundant Gymnodimine

    Get PDF
    Alexandrium ostenfeldii is a toxic dinoflagellate that has recently bloomed in Ouwerkerkse Kreek, The Netherlands, and which is able to cause a serious threat to shellfish consumers and aquacultures. We used a large set of 68 strains to the aim of fully characterizing the toxin profiles of the Dutch A. ostenfeldii in consideration of recent reports of novel toxins. Alexandrium ostenfeldii is known as a causative species of paralytic shellfish poisoning, and consistently in the Dutch population we determined the presence of several paralytic shellfish toxins (PST) including saxitoxin (STX), GTX2/3 (gonyautoxins), B1 and C1/C2. We also examined the production of spiroimine toxins by the Dutch A. ostenfeldii strains. An extensive liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed a high intraspecific variability of spirolides (SPX) and gymnodimines (GYM). Spirolides included 13-desMethyl-spirolide C generally as the major compound and several other mostly unknown SPX-like compounds that were detected and characterized. Besides spirolides, the presence of gymnodimine A and 12-Methyl-gymnodimine A was confirmed, together with two new gymnodimines. One of these was tentatively identified as an analogue of gymnodimine D and was the most abundant gymnodimine (calculated cell quota up to 274 pg cell(-1), expressed as GYM A equivalents). Our multi-clonal approach adds new analogues to the increasing number of compounds in these toxin classes and revealed a high strain variability in cell quota and in toxin profile of toxic compounds within a single population.Peer reviewe

    Improving in vitro ciguatoxin and brevetoxin detection: selecting neuroblastoma (Neuro-2a) cells with lower sensitivity to ouabain and veratridine (OV-LS).

    Get PDF
    Abstract Marine biotoxins accumulating in seafood products pose a risk to human health. These toxins are often potent in minute amounts and contained within complex matrices; requiring sensitive, reliable, and robust methods for their detection. The mouse neuroblastoma (Neuro-2a) cytotoxicity assay (N2a-assay) is a sensitive, high-throughput, in vitro method effective for detecting sodium channel-specific marine biotoxins. The N2a-assay can be conducted to distinguish between specific effects on voltage-gated sodium (NaV) channels, caused by toxins that activate (e.g., ciguatoxins (CTXs), brevetoxins (PbTxs)) or block (e.g., tetrodotoxins, saxitoxins) the target NaV. The sensitivity and specificity of the assay to compounds activating the NaV are achieved through the addition of the pharmaceuticals ouabain (O) and veratridine (V). However, these compounds can be toxic to Neuro-2a cells and their application at insufficient or excessive concentrations can reduce the effectiveness of this assay for marine toxin detection. Therefore, during growth incubation, Neuro-2a cells were exposed to O and V, and surviving cells exhibiting a lower sensitivity to O and V (OV-LS) were propagated. OV-LS Neuro-2a cells were selected for 60–80% survival when exposed to 0.22/0.022 mM O/V during the cytotoxicity assay. At these conditions, OV-LS N2a cells demonstrated a 3.5-fold higher survival rate 71% ± 7.9 SD (n = 232), and lower sensitivity to O/V, compared to the original Neuro-2a cells 20% ± 9.0 SD (n = 16). Additionally, OV-LS N2a cells were 1.3–2.6-fold more sensitive for detecting CTX3C 1.35 pg/ml, CTX1B 2.06 pg/ml, and PbTx-3 3.04 ng/ml compared to Neuro-2a cells using 0.1/0.01 mM O/V. Detection of CTX3C in a complex fish matrix using OV-LS cells was 0.0048 pg CTX3C/mg fish tissue equivalent. This work shows the potential for a significant improvement in sensitivity for CTX3C, CTX1B, and PbTx-3 using the OV-LS N2a-assay

    Toxins from Adriatic blue mussels. A decade of studies

    Full text link

    Palytoxin and an Ostreopsis Toxin Extract Increase the Levels of mRNAs Encoding Inflammation-Related Proteins in Human Macrophages via p38 MAPK and NF-κB

    Get PDF
    BACKGROUND: Palytoxin and, likely, its analogues produced by the dinoflagellate genus Ostreopsis, represent a class of non-proteinaceous compounds displaying high toxicity in animals. Owing to the wide distribution and the poisonous effects of these toxins in humans, their chemistry and mechanism of action have generated a growing scientific interest. Depending on the exposure route, palytoxin and its Ostreopsis analogues may cause several adverse effects on human health, including acute inflammatory reactions which seem more typical of cutaneous and inhalation contact. These observations have led us to hypothesize that these toxins may activate pro-inflammatory signalling cascades. METHODOLOGY AND PRINCIPAL FINDINGS: Here we demonstrate that palytoxin and a semi-purified Ostreopsis cf. ovata toxin extract obtained from a cultured strain isolated in the NW Adriatic Sea and containing a putative palytoxin and all the ovatoxins so far known--including the recently identified ovatoxin-f--significantly increase the levels of mRNAs encoding inflammation-related proteins in immune cells, i.e. monocyte-derived human macrophages, as assessed by Real-Time PCR analysis. Western immunoblot and electrophoretic mobility shift assays revealed that nuclear transcription factor -κB (NF-κB) is activated in cells exposed to toxins in coincidence with reduced levels of the inhibitory protein IκB-α. Moreover, Mitogen-Activated Protein Kinases (MAPK) were phosphorylated in response to palytoxin, as also reported by others, and to the Ostreopsis toxin extract, as shown here for the first time. By using specific chemical inhibitors, the involvement of NF-κB and p38 MAPK in the toxin-induced transcription and accumulation of Cycloxigenase-2, Tumor Necrosis Factor-α, and Interleukin-8 transcripts has been demonstrated. CONCLUSIONS AND SIGNIFICANCE: The identification of specific molecular targets of palytoxin and its Ostreopsis analogues, besides contributing to expand the still limited knowledge of the intracellular signalling cascades affected by these toxins, may have important implications in setting up focused pharmacological interventions, replacing currently used symptomatic treatments

    Mediterranean Azadinium dexteroporum (Dinophyceae) produces six novel azaspiracids and azaspiracid-35: a structural study by a multi-platform mass spectrometry approach

    Get PDF
    Azadinium dexteroporum is the first species of the genus described from the Mediterranean Sea and it produces different azaspiracids (AZA). The aims of this work were to characterize the toxin profile of the species and gain structural information on azaspiracids produced by the A. dexteroporum strain SZN-B848 isolated from the Gulf of Naples. Liquid chromatography-mass spectrometry (LC-MS) analyses were carried out on three MS systems having different ion source geometries (ESI, TurboIonSpray®, ESI ION MAX) and different MS analyzers operating either at unit resolution or at high resolution, namely a hybrid triple quadrupole-linear ion trap (Q-Trap MS), a time of flight (TOF MS), and a hybrid linear ion trap Orbitrap XL Fourier transform mass spectrometer (LTQ Orbitrap XL FTMS). As a combined result of these different analyses, A. dexteroporum showed to produce AZA-35, previously reported from Azadinium spinosum, and six compounds that represent new additions to the AZA-group of toxins, including AZA-54 to AZA-58 and 3-epiAZA-7, a stereoisomer of the shellfish metabolite AZA-7. Based on the interpretation of fragmentation patterns, we propose that all these molecules, except AZA-55, have the same A to I ring system as AZA-1, with structural modifications all located in the carboxylic side chain. Considering that none of the azaspiracids produced by the Mediterranean strain of A. dexteroporum is currently regulated by European food safety authorities, monitoring programs of marine biotoxins in the Mediterranean area should take into account the occurrence of the new analogues to avoid an underestimation of the AZA-related risk for seafood consumers

    Analytical Strategies For The Identification Of Marine Biotoxins. Focus On Palytoxins

    No full text
    Descrizione delle strategie analitiche utilizzare per identificare le tossine naturali, caratterizzarne la struttura, e definire il livello di contaminazione. I risultati sulle correlazioni emerse tra i parametri ambientali e la produzione di tossine sono stati illustrati in dettaglio in quanto di maggiore interese per l'audienc
    • …
    corecore