54 research outputs found

    Chemical and biomechanical characterization of hyperhomocysteinemic bone disease in an animal model

    Get PDF
    BACKGROUND: Classical homocystinuria is an autosomal recessive disorder caused by cystathionine β-synthase (CBS) deficiency and characterized by distinctive alterations of bone growth and skeletal development. Skeletal changes include a reduction in bone density, making it a potentially attractive model for the study of idiopathic osteoporosis. METHODS: To investigate this aspect of hyperhomocysteinemia, we supplemented developing chicks (n = 8) with 0.6% dl-homocysteine (hCySH) for the first 8 weeks of life in comparison to controls (n = 10), and studied biochemical, biomechanical and morphologic effects of this nutritional intervention. RESULTS: hCySH-fed animals grew faster and had longer tibiae at the end of the study. Plasma levels of hCySH, methionine, cystathionine, and inorganic sulfate were higher, but calcium, phosphate, and other indices of osteoblast metabolism were not different. Radiographs of the lower limbs showed generalized osteopenia and accelerated epiphyseal ossification with distinct metaphyseal and suprametaphyseal lucencies similar to those found in human homocystinurics. Although biomechanical testing of the tibiae, including maximal load to failure and bone stiffness, indicated stronger bone, strength was proportional to the increased length and cortical thickness in the hCySH-supplemented group. Bone ash weights and IR-spectroscopy of cortical bone showed no difference in mineral content, but there were higher Ca(2+)/PO(4)(3- )and lower Ca(2+)/CO(3)(2- )molar ratios than in controls. Mineral crystallization was unchanged. CONCLUSION: In this chick model, hyperhomocysteinemia causes greater radial and longitudinal bone growth, despite normal indices of bone formation. Although there is also evidence for an abnormal matrix and altered bone composition, our finding of normal biomechanical bone strength, once corrected for altered morphometry, suggests that any increase in the risk of long bone fracture in human hyperhomocysteinemic disease is small. We also conclude that the hCySH-supplemented chick is a promising model for study of the connective tissue abnormalities associated with homocystinuria and an important alternative model to the CBS knock-out mouse

    CASRdb: Calcium-sensing receptor locus-specific database for mutations causing familial (Benign) hypocalciuric hypercalcemia, neonatal severe hyperparathyroidism, and autosomal dominant hypocalcemia

    No full text
    Familial hypocalciuric hypercalcemia (FHH) is caused by heterozygous loss-of-function mutations in the calcium-sensing receptor (CASR), in which the lifelong hypercalcemia is generally asymptomatic. Homozygous loss,of-function CASR mutations manifest as neonatal severe hyperparathyroidism (NSHPT), a rare disorder characterized by extreme hypercalcemia and the bony changes of hyperparathyroidism, which occur in infancy. Activating mutations in the CASR gene have been identified in several families with autosomal dominant hypocalcemia (ADH), autosomal dominant hypoparathyroidism, or hypocalcemic hypercalciuria. Individuals with ADH may have mild hypocalcemia and relatively few symptoms. However, in some cases seizures can occur, especially in younger patients, and these often happen during febrile episodes due to intercurrent infection. Thus far, 112 naturally-occurring mutations in the human CASR gene have been reported, of which 80 are unique and 32 are recurrent. To better understand the mutations causing defects in the CASR gene and to define specific regions relevant for ligand,receptor interaction and other receptor functions, the data on mutations were collected and the information was centralized in the CASRdb (www.casrdb.mcgill.ca), which is easily and quickly accessible by search engines for retrieval of specific information. The information can be searched by mutation, genotype-phenotype, clinical data, in vitro analyses, and authors of publications describing the mutations. CASRdb is regularly updated for new mutations and it also provides a mutation submission form to ensure up-to-date information. The home page of this database provides links to different web pages that are relevant to the CASR, as well as disease clinical pages, sequence of the CASR gene exons, and position of mutations in the CASR. The CASRdb will help researchers to better understand and analyze the mutations, and aid in structure-function analyses. (C) 2004 Wiley-Liss, Inc.24210711

    Cole-Carpenter’s syndrome

    No full text

    Spatial and temporal distribution of the neutral polymorphisms in the last ZFX intron: analysis of the haplotype structure and genealogy.

    No full text
    • …
    corecore