103 research outputs found

    Identification of the het-r vegetative incompatibility gene of Podospora anserina as a member of the fast evolving HNWD gene family

    Get PDF
    In fungi, vegetative incompatibility is a conspecific non-self recognition mechanism that restricts formation of viable heterokaryons when incompatible alleles of specific het loci interact. In Podospora anserina, three non-allelic incompatibility systems have been genetically defined involving interactions between het-c and het-d, het-c and het-e, het-r and het-v. het-d and het-e are paralogues belonging to the HNWD gene family that encode proteins of the STAND class. HET-D and HET-E proteins comprise an N-terminal HET effector domain, a central GTP binding site and a C-terminal WD repeat domain constituted of tandem repeats of highly conserved WD40 repeat units that define the specificity of alleles during incompatibility. The WD40 repeat units of the members of this HNWD family are undergoing concerted evolution. By combining genetic analysis and gain of function experiments, we demonstrate that an additional member of this family, HNWD2, corresponds to the het-r non-allelic incompatibility gene. As for het-d and het-e, allele specificity at the het-r locus is determined by the WD repeat domain. Natural isolates show allelic variation for het-

    Are alkalitolerant fungi of the Emericellopsis lineage (Bionectriaceae) of marine origin?

    Get PDF
    Surveying the fungi of alkaline soils in Siberia, Trans-Baikal regions (Russia), the Aral lake (Kazakhstan), and Eastern Mongolia, we report an abundance of alkalitolerant species representing the Emericellopsis-clade within the Acremonium cluster of fungi (order Hypocreales). On an alkaline medium (pH ca. 10), 34 acremonium-like fungal strains were obtained. One of these was able to develop a sexual morph and was shown to be a new member of the genus Emericellopsis, described here as E. alkalina sp. nov. Previous studies showed two distinct ecological clades within Emericellopsis, one consisting of terrestrial isolates and one predominantly marine. Remarkably, all the isolates from our study sites show high phylogenetic similarity based on six loci (LSU and SSU rDNA, RPB2, TEF1-a, ß-tub and ITS region), regardless of their provenance within a broad geographical distribution. They group within the known marine-origin species, a finding that provides a possible link to the evolution of the alkaliphilic trait in the Emericellopsis lineage. We tested the capacities of all newly isolated strains, and the few available reference ex-type cultures, to grow over wide pH ranges. The growth performance varied among the tested isolates, which showed differences in growth rate as well as in pH preference. Whereas every newly isolated strain from soda soils was extremely alkalitolerant and displayed the ability to grow over a wide range of ambient pH (range 4–11.2), reference marine-borne and terrestrial strains showed moderate and no alkalitolerance, respectively. The growth pattern of the alkalitolerant Emericellopsis isolates was unlike that of the recently described and taxonomically unrelated alkaliphilic Sodiomyces alkalinus, obtained from the same type of soils but which showed a narrower preference towards high pH

    Efficient degradation of tannic acid by black Aspergillus species

    Get PDF
    A set of aspergillus strains from culture collections and wild-type black aspergilli isolated on non-selective media were used to validate the use of media with 20 % tannic acid for exclusive and complete selection of the black aspergilli. The 20% tannic acid medium proved useful for both quantitative and qualitative selection of all different black aspergilli, including all recognized species: A. carbonarius, A. japonicus, A. aculeatus, A foetidus, A. heteromorphus, A. niger, A. tubingensis and A. brasiliensis haplotypes. Even higher concentrations of tannic acid can be utilized by the black aspergilli suggesting a very efficient tannic acid-degrading system. Colour mutants show that the characteristic ability to grow on high tannic acid concentrations is not causally linked to the other typical feature of these aspergilli, i.e. the formation of brown-black pigments. Sequence analysis of the A. niger genome using the A. orvzae tannase gene yielded eleven tannase-like genes, far more than in related species. Therefore, a unique ecological niche in the degradation of tannic acid and connected nitrogen release seems to be reserved for these black-spored cosmopolitans

    Asymmetrical template-DNA strand segregation can explain density-associated mutation-rate plasticity

    No full text
    The mutation rate is a fundamental factor in evolutionary genetics. Recently, mutation rates were found to be strongly reduced at high density in a wide range of unicellular organisms, prokaryotic and eukaryotic. Independently, cell division was found to become more asymmetrical at increasing density in diverse organisms; in yeast, some "mother" cells continue dividing, while their "offspring" cells do not divide further. Here, we investigate how this increased asymmetry in cell division at high density can be reconciled with reduced mutation-rate estimates. We calculated the expected number of mutant cells due to replication errors under various modes of segregation of template-DNA strands and copy-DNA strands, both under exponential and under linear growth. We show that the observed reduction in the mutation rate at high density can be explained if mother cells preferentially retain the template-DNA strands, since new mutations are then confined to non-dividing daughter cells thus reducing the spread of mutant cells. Any other inheritance mode results in an increase in the number of mutant cells at higher density. The proposed hypothesis that patterns of DNA-strand segregation are density dependent fundamentally challenges our current understanding of mutation-rate estimates and extends the distinction between germline and soma to unicellular organisms

    Isolation of small protoplasts from Aspergillus niger.

    Get PDF
    Isolation of small protoplasts from Aspergillus niger
    • 

    corecore